
LEVERAGING NATURAL LANGUAGE PROCESSING IN REQUIREMENTS ANALYSIS:

How to Eliminate Over Half of All
Design Errors Before they Occur

Numerous studies have shown that the cost of fixing engineering errors in

systems and software increases exponentially over the project life cycle.

Couple that with results showing that more than half of all engineering

errors originate in the requirements, and you have a compelling argument

in favour of finding and correcting requirements errors where they occur…

at the very beginning of the project.

Up until recently, however, most error detection tools used in systems

development – code syntax checkers, debuggers, static analysis tools,

wiring testers and the like – have been designed to find errors in the soft-

ware or hardware build rather than in the requirements.

Automated detection of requirements errors has been a much tougher

nut to crack. Most requirements documents are still written in natu-

ral language, and often, it’s the inherent ambiguities of natural lan-

guage that cause requirements errors. Finding ways to analyze natural

language text and identify possible sources of requirements errors

has been a difficult problem to solve.

Fortunately, new requirements analysis tools based on natural language

processing (NLP) are now emerging. They promise to significantly reduce

the cost of fixing requirements errors by finding them earlier and faster,

and to free domain experts from tedious, time-consuming tasks that waste

their expertise.

INTRODUCTION

2 3qracorp.com qracorp.com

https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://twitter.com/qracorp

In 2004, NASA performed a study on the relative cost

of fixing engineering errors during the various phases

of a project development cycleⅶ.. They reviewed a

number of previous studies (Boehmⅷ, Rothmanⅸ ,

McGibbonⅹ, Chigitalⅺ, and others), and also ran cost

analyses on a number of large systems development

projects

There was one finding common to all the software

studies they examined and all the systems develop-

ment projects they studied: the cost to fix software

defects rose exponentially with each successive

phase of the project life cycle. Figure 1 shows a com-

parison of the system cost-to-fix results (excluding

operations) NASA obtained from their various meth-

odologies, while Figure 2 compares their system

results with the software cost models they found in

the earlier studies they had examined.

Looking at these findings, it’s easy to understand why

companies would want to find and fix errors more

efficiently in the later phases of the project life cycle

– the build/code and test phases – where costs-to-

repair rise astronomically, and before the product

goes operational, where they rise even more. Thus we

see an emphasis on automated tools like code syntax

checkers, debuggers and test coverage tools in those

phases.

But the fact is, most systems and software defects

that are found in those phases – or in the operations

phase – do not originate in those phases.

COST TO FIX ERRORS RISES EXPONENTIALLY OVER THE DEVELOPMENT CYCLE

Figure 2: Comparison of Software and System Cost Factors
(Source: Stecklein, et al [i])

0

200

400

600

800

1000

1200

1400

1600

Requirements Design Build Test

Life-Cycle Phase
C

o
st

 F
a
c
to

r

1
21

100

51
36

1000

71 7
29

31 16

1615

8

4 5qracorp.com qracorp.com

Figure 1: Comparison of System Cost Factors – Excluding Operations
(Source: Stecklein, et al [i])

0

10

20

30

40

50

60

70

80

Requirements Design Build Test

Life-Cycle Phase

C
o

st
 F

a
c
to

r

1

16

21

8

1

13

61

31

16

78

4
1

7

28

4

For more information about methods see source: Stecklein, et al [i]

For more information about methods see source: Stecklein, et al [i]

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com

High Quality
Requirements

Low Quality
Requirements

0%

10%

20%

30%

40%

50%

60%

70%

The vast majority of engineering defects detected

toward the end of a project or in operations were

actually present much earlier – in the requirements

and design phases – and could have been corrected

at far less expense had they been detected earlier.

A study by Pulitzer Prize-winning IT consultant and

author James Martinⅻ, for example, found that:

The root cause of 56 percent of all defects

identified in software projects are introduced

during the requirements analysis and

definition phase (Figure 3).

About 50% of requirements defects are the

result of poorly written, unclear, ambiguous

or incorrect requirements.

The other 50% are due to incompleteness

of specification (incomplete and omitted

requirements.

82% of application rework is related

to requirements errors.

Just looking back at the NASA data discussed earlier,

we can see that companies could gain significant sav-

ings by finding and correcting requirements errors

near their point of origin, in the requirement analy-

sis and definition phase of the project. Other studies

suggest there are additional high premiums to pay

for undetected requirements errors.

A study by IAG consulting, which analyzed “the

importance and impact of business requirements on

enterprise success with technology projects” found

that 68% of companies suffer from poor requirements

specifications practices, and that these companies:

Spent 49% more money to deliver applications

Took 39% more time to deliver applications

Reported 79% of their projects over time and

over budget

Consumed over 41.5% of its new project

development resources on poorly specified

requirements

From the data they collected, IAG concluded that...

There is a 60% time and cost

premium to be paid on projects

with poor quality requirements.

It is readily apparent that companies need to do more

than they have in the past to ensure that they are

authoring and accepting high quality requirements.

OVER HALF OF ALL ENGINEERING ERRORS ORIGINATE IN THE REQUIREMENTS

•

•

•

•

Figure 4: Distribution of defects in software projects by development phase
(Source: Martin [iii])

Requirements56% Code7%Design27% Other10%

•

•

•

•

Figure 3: Time and cost premiums on low quality requirements
(Source: IAG [iv])

Time Budget

Premium paid in cost and time

required for project with

High Quality requirements

6 7qracorp.com qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com

Checklists

Checklists are valuable, not only for analysis of an

existing requirements document, but also for train-

ing new engineers in requirements engineering (RE)

best practices. Many organizations concerned with

the building of large, complex, requirements-driven

systems publish some kind of requirements qual-

ity checklist. NASA, for example, includes three

such checklists as an appendix (How to Write a

Good Requirement) to their Systems Engineering

Handbook ⅹⅵ. INCOSE has published a 74-page Guide

to Writing Requirements ⅹⅶ. Even we at QRA Corp

have published our own guide to help systems engi-

neers write clear requirements. ⅹⅶ

The problem with this method is that it is difficult

and time consuming to review every requirement of

a large specification manually, even with a check-

list. This is due, in part, to the size of such checklists.

Consider the following:

INCOSE’s Guide for Writing Requirements

lists 44 “rules” to observe when writing

a requirement.

NASA’s three checklists encompass

38 check points.

QRA’s guide includes 21 points.

Failure to keep so many rules in mind when writing

requirements is normal. Manually checking every

requirement against so many “rules” or “best prac-

tices” is time-consuming, tedious and an inefficient

use of valuable domain expert resources.

Model-based Specifications

One way companies have tried to combat the problem

 of requirements errors is through the use of for-

mal specification methodologies like Model-Based

Systems Engineering (MBSE). In MBSE, domain mod-

els – rather than natural language (NL) requirements

documents – are used as the primary means of com-

munication between engineers. Since the specification

 language is essentially mathematical and the domain

models can be tested and verified, there is little room

for ambiguity and far less chance that a requirement

error will not be caught.

Even where such methods are used, however, the initial,

top-level requirements are always stated in natural

language. This is normally the case in defence, space

and other industries where the original requirements

come from outside the supplier organization. And

in these situations, the supplier usually has a contrac-

tual obligation to trace the elements of the domain

model to the natural language customer requirements

they fulfil.

In such cases, vague or ambiguous requirements in

the natural language specification will almost cer-

tainly slow the development of the domain models.

They could also impede traceability between the

domain models and the customer specification.

Worse yet, vagueness or ambiguity in the NL source

requirements could introduce errors into the models

through misinterpretation. And even when the NL

source requirements are clear, it is extremely difficult

to accurately translate the semantics of natural lan-

guage into a mathematical model, and trying to do

so tends to increase the size and complexity of the

model dramatically. As professors Shilpi Singh and

Lakshmi Saikia point out in a recent paper, “Formal

methods help in writing specifications that are not

always identical to the stated requirements.” ⅺⅴ. This

latter problem is only exacerbated by ambiguity in

the NL requirements. Thus, even formal environments

are not completely immune to errors caused by

ambiguity in NL specifications.

Formalised specifications, however, occupy only a

small portion of the specification universe. The vast

majority of requirements documents are still written

in natural language.

In fact, one recent studyⅹⅴ found that 79% of companies

were using “common” (unstructured) natural lan-

guage in their requirements documents, while 16%

used “structured” (restricted) natural language,

employing templates and forms. Only 5% of the

companies surveyed said they were using formal

approaches like MBSE (Figure 5).

With natural language dominating the requirements

definition space, it’s only natural that the dominant

methods for finding errors in requirements spec-

ifications have been those aimed at analysis of NL

requirements. Historically, those methods have been

based on human review of the requirements. And

most of them employ one or both of two techniques:

(1) checklists and (2) peer review.

CURRENT SOLUTIONS… AND WHY THEY MISS MANY REQUIREMENTS ERRORS

•

•

•

Peer Review

Peer review is much like checklist review, but

enhanced by “parallel processing” (multiple pairs of

eyes) and a variety of perspectives.

Shilpi Singh and Lakshmi Saikiav propose that the

most effective means of spotting ambiguities in

requirements may be to:

...hand them over to several

stakeholders, ask each for an

interpretation, and compare these

interpretations afterward. If the

interpretations differ, the

requirements are ambiguous.

The problem here is that peer review doesn’t elimi-

nate the problems of checklist review. In fact, in terms

of expense, it multiplies them. As Singh and Saikia

go on to point out, “this approach is economically

feasible only for small sets of requirements.” v In other

words, peer review increases the chances of error

detection, but it also multiplies labour cost.

Manual review of any kind can also be a fatiguing and

extremely time-consuming (expensive) process when

dealing with a large document of newly-defined cus-

tomer requirements for a complex system.

8 9qracorp.com qracorp.com

Figure 5: Time and cost premiums on
low quality requirements
(Source: Mich, et al [v])

Common Natural Language79%

Structured Natural Language, e.g. templates, forms16%

Formalised Language5%

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com

A NEW, BETTER SOLUTION: NLP REQUIREMENTS ANALYSIS TOOLS AN IN-DEPTH LOOK AT NLP REQUIREMENTS ANALYSIS

•

•

•

•

•

•

•

•

•

The idea of using NLP in requirements analysis isn’t

altogether new. NASA built and conducted studies

with such a tool in the late 1990s.ⅹⅹ They called their

software Automated Requirements Measurement,

or ARM.

The NASA researchers, led by William Wilson, Linda

Rosenberg and Lawrence Hyatt, clearly saw a need

for such tools, in spite of the growing interest in for-

mal specifications at that time:

“Despite the significant advantages attributed to the

use of formal specification languages, their use has not

become common practice. Because requirements that

the acquirer expects the developer to contractually

satisfy must be understood by both parties, specifica-

tions are most often written in natural language...”

“...The use of natural language to

prescribe complex, dynamic

systems has at least three

severe problems: ambiguity,

inaccuracy and inconsistency.”

NASA identified a series of “quality attributes” that

requirements documents should possess. These

desirable properties were:

Complete - precisely defines the system’s

responses to all real-world situations the

system will encounter.

Consistent - does not contain conflicts

between requirements statements.

Correct - accurately identifies the conditions

of all situations the system will encounter

and precisely defines the system’s response

to them.

Modifiable - as a logical structuring with

related concerns grouped together.

Ranked - organizes the specification

statements by importance and/or stability

(which may conflict with the document’s

modifiability).

Traceable - identifies each requirement

uniquely.

Unambiguous - states all requirements in

such a manner that each can only be inter-

preted one way.

Valid - all project participants can under-

stand, analyze, accept or approve it.

Verifiable - must be consistent with related

specifications at other (higher and lower)

levels of abstraction

What’s needed, we believe, is an automated way to

help engineers and project managers author and

clean up natural language requirements – make them

crystal clear, thus easier to understand and evaluate –

before putting them out for peer review, before mod-

elling and design begins.

As widely-cited IT author Capers Jones points out:

“Far too much of the software literature concentrates

on code defects and ignores the more numerous

defects found in requirements and design. It is also

interesting that many of the companies selling quality

tools such as static analysis tools and test tools focus

only on code defects.

Unless requirement & design defects

are prevented or removed before

coding starts, they will eventually

find their way into the code where

it may be difficult to remove them.

Fortunately, a new class of tools is now emerging that

addresses this problem. This new tool class makes use

of natural language processing (NLP) techniques to

help system engineers and project managers refine

natural language requirements in much the same way

that syntax checkers and debuggers help software

engineers refine their code.

These new tools – called NLP requirements analysis

(RA) tools – analyze the language used the specifi-

cation of individual requirements. They then provide

the user with a quality assessment of each require-

ment analyzed. These assessments flag any language

usage (or lack thereof) within the requirement that

may indicate a violation of requirements engineering

(RE) best practices within the organization. In

other words, they automate and significantly speed

the task of searching for possible errors in NL

requirements documents.

NLP RA tools offer three major benefits to systems engi-

neers and project managers tasked with RE duties.

First, NLP RA tools analyze requirements instantly.

Even very large requirements documents with thou-

sands of requirements can be evaluated in seconds.

Systems engineers and project managers get instant

feedback on all the requirements they’ve authored or

need to analyze.

Second, the reports these tools generate show exactly

where work is needed. They provide visual scoring of

each requirement assessed. Engineers can see imme-

diately which sections of the document and which

specific requirements need the most work.

Finally and most importantly, these tools automate

a tedious task that doesn’t require domain expertise.

Manual review of requirements documents – even

portions of those documents or changes to them –

is a fatiguing and time-consuming task when one is

armed only with a long checklist of RE best practices.

It’s a waste of a domain expert’s valuable time and

know-how.

That’s not to say that human review of requirements is

unneccessary or unimportant. Rather, these new NLP

tools will free engineers from the “menial” portion

of this task: sifting through every single requirement

and making sure each is written to organizational

guidelines and best practices. They will let domain

experts focus on what’s really needed: reviewing the

results the tools provide and – taking their cues from

the “red flags” generated by those tools – using their

expertise to correct the deficiencies they find.

10 11qracorp.com qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com

The NASA researchers realized, however, that most,

if not all, of these characteristics are subjective, and

therefore difficult to measure. So, they went on to

identify a set of “quality indicators” that could be

associated with the desired quality attributes.

These quality indicators are extremely useful in NLP

requirements analysis, because they “can be found

and counted with relative ease” and their presence,

absence, abundance or dearth within a given require-

ment or the document as a whole tends to indicate

the presence or absence of a related quality attribute.

Wilson, Rosenberg and Hyatt grouped the quality

indicators they found into nine categories. Four of

these categories – size, readability, specification depth

and text structure – reflect upon the structure of the

specification document as a whole and do not apply

to individual requirements. The other five quality

indicator categories relate to the quality of individ-

ual requirements statements. It is this second group

that is of great interest to requirements analysts

and thus to these new NLP tools.

The requirements statement quality indicator

categories are:

Imperatives – words that give a command

like shall, must, will, etc.

Continuances – words like below:, as

follows:, following:, etc., which introduce the

specification of requirements at a lower level,

excessive use of which may indicate overly

complex requirements.

Directives – words or phrases like figure,

table and for example, which point to illus-

trative information within the document and

thus tend to indicate requirements that are

more understandable.

Options – words like can, may and optionally

that appear to give the supplier latitude in

satisfying the requirement and thus reduce

the acquirer’s control over the system.

Weak Phrases – words and phrases like

adequate, as a minimum, easy, normal, etc.,

that can cause uncertainty and leave room

for multiple interpretations.

The words and phrases in this second class of quality

indicators, those in the categories related to indi-

vidual requirements, appear in great abundance in

requirements documents. This makes these quality

indicators tedious to search for manually, but prime

targets for NLP analysis.

The results of NASA’s ARM tool study showed that

the quality of requirements documents and of indi-

vidual requirements statements can, to a certain

extent, be quantified and evaluated using such

quality indicators.

Unfortunately, no one was able to pick up the ball and

run with it at that time.

While the ARM study has been frequently cited, and

subsequent studies (Michⅴ, Singh & Saikiaixⅸ, Kofxⅺ,

Satelixxii) have looked at the feasibility of NLP tools

for improving requirements analysis and authoring,

there was little further development of NLP require-

ments analysis tools for many years, as the computing

power at the disposal of most requirements authors

was insufficient for effective use of NLP algorithms…

Until now.

•

•

•

•

•

12 13qracorp.com qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com

Today, however, computational advances are finally

allowing modern NLP requirements analysis tools

to emerge. These new applications are built on the

same principles as NASA’s ARM tool. They evaluate

requirements based on the same or similar qual-

ity indicators. But now they are made for every-day

requirements analysis and authoring.

These new NLP RA tools normally possess five key

attributes:

Specific – designed for daily use in requirements

analysis, authoring and editing; optimized to

find and evaluate the properties of quality

requirements

Simple – light-weight applications with highly

intuitive user interface; easy to learn and use

Seamless – work with existing requirements

authoring tools as an add-on or extension,

or through easy import/export

Fast – provide immediate, on-demand analysis

Configurable – Easily configured for

domain-specific terminology and practices;

adaptable to changing user needs and

preferences

As an example of this emerging class of tools, we’ll

look at QRA Corp’s new NLP requirements analy-

sis product: QVscribe. QVscribe has been initially

designed as an extension to Microsoft Word, the

world’s most popular requirements authoring plat-

form. Plugins for other authoring and RM tools are

currently under development.

QVscribe can be easily configured to a company’s

best practices through its configuration dialog box

(Figure 6).

THE NEW GENERATION OF NLP REQUIREMENTS ANALYSIS TOOLS

•

•

•

•

•

The user or his organization supplies a few examples

of how requirements are identified within the orga-

nization or project. Counterexamples can also be

supplied to exclude certain constructions or sec-

tions from autodetection (Figure 7, blue ellipse).

Requirements can also be marked manually by high-

lighting the requirement text and clicking on the Mark

Requirements button (Figure 7, red ellipses).

Once the user has marked all the requirements he

or she wishes to analyze, clicking on the Analyze

Requirements button at the bottom of the QVscribe

window initiates the analysis process. When QVscribe

completes its analysis – usually within a few seconds

– it presents the user with a score – from one to five

bars – for each requirement analyzed (Figure 8).

Clicking on any requirement score in the analysis

pane highlights the requirement and the quality

indicators within it that triggered the given score

(Figure 9).

Figure 8: QVscribe visual scorecard

Figure 9: Highlighting of quality indicators
following requirements analysis

Figure 6: Configuring QVscribe to company practices

Figure 7: Autodetecting and marking requirements in QVscribe

14 15qracorp.com qracorp.com

ISS Crew Transportation and Services Requirements Document (Source: NASA)

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com

This new generation of NLP requirements analysis

tools will provide a number of important benefits to

systems engineers and engineering project managers.

First, they automate a tedious, time-consuming,

fatiguing and error-prone task, and accomplish it

almost instantly. This not only saves time, it also saves

domain experts from tasks that don’t require domain

knowledge. Again, this is not to say that expert

review of requirements is unnecessary. Instead, these

new tools streamline this task by immediately point-

ing out possible syntax problems, helping experts to

correct such errors quickly and thus allowing them

more time to focus on what really matters, like the

semantics of the requirements or what requirements

are missing.

Second, they instantly show where work is needed.

The user can browse through the requirements scores

and immediately see areas where the document is

weak and perhaps needs extra attention, as well as

which individual requirements need work.

Third, they prioritize users’ revision tasks. Users can

simply start with the lowest rated requirements (the

one-star requirements in our QVscribe example) and

work their way up towards the higher-rated ones.

Fourth, they are easily configured and optimized for

any given domain and for changing user needs and

preferences. Organizations can optimize these tools

to their own policies and best practices, and users

can configure them on the fly to adapt to specific

situations and to test for specific quality indicators.

Fifth, NLP requirements analysis tools provide speed

training for new systems engineers and project man-

agers. Using such tools while authoring or analyzing

requirements helps them quickly see mistakes they

might be making, and helps them recognize those

mistakes in others’ work.

Sixth, these tools also help speed the authoring of

high-quality requirements – even among experienced

requirements engineers – by providing a sanity check

of newly-written requirements, helping catch errors

early and providing suggestions for improving those

requirements on the fly.

Seventh, they speed review and editing of customer

requirements specifications, helping requirements

analysts and project managers catch problems,

assess risk, and negotiate revisions, before they bid

on projects and hand those customer requirements

over to the system designers.

And finally, NLP requirements analysis tools help correct

and eliminate requirements errors where they orig-

inate – during the requirements analysis and defini-

tion phase of the project – before they become more

expensive to fix. For not only do these tools help

detect and correct the half (according to Martinvi) of

requirements defects that result from “poorly writ-

ten, unclear, ambiguous or incorrect requirements.”

They also help realize additional savings by allowing

domain experts more time to find those missing

requirements that account for the other half

of requirements errors.

THE BENEFITS OF NLP REQUIREMENTS ANALYSIS

16 17qracorp.com qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com

Despite the rise of formal specifications and MBSE, the vast majority of

requirements documents for complex systems are still written in natural

language. They are thus vulnerable to errors due to the inherent ambiguities

of natural language.

Since most errors in systems development originate in the requirements,

and since the cost to fix errors increases in an exponential manner through

successive phases of the project life cycle, it makes sense to try to catch

requirements errors as early as possible – during the requirements definition

phase of the project.

Until recently, finding errors in natural language requirements

specificationshas been a labour-intensive proposition, relying primarily on

the tedious, “brute force” techniques of checklist review and peer review.

But advances in natural language processing and the emergence of new

NLP requirements analysis tools, like QVscribe, promise to streamline this

process and allow domain experts to spend more of their valuable time

and know how on what’s really important.

CONCLUSIONS

QRA Corp has created one of the first of the emerging class of NLP

requirements analysis tools described in this article. It’s called QVscribe.

If you would like to learn more about QVscribe – or if you have an imme-

diate need and would like to try QVscribe for yourself – visit the QVscribe

product page at qracorp.com/qvscribe/.

While you’re there, sign up for our blog to be notified when the full release

of QVscribe becomes available, and to get news and updates on QVscribe

and other QRA products.

NEXT STEPS

18 19qracorp.com qracorp.com

https://qracorp.com/qvscribe/?utm_source=whitepaper&utm_medium=direct&utm_campaign=qvsWpSpon&utm_content=nlpForReq
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://qracorp.com/
http://qracorp.com

ⅰ	 Jonette M.,et al, Error Cost Escalation Through the Project Life Cycle, NASA Johnson Space Center and INCOSE, June 2004.

ⅱ	 Boehm, B. W., Software Engineering Economics, Prentice-Hall, 1981.

ⅲ	 Martin, James, An Information Systems Manifesto, Prentice Hall, January 1984.

NB: While Martin’s research is dated, we find it still cited in academic papers today, as there does not seem to be more recent
study data on the subject. It also seems generally accepted among the systems engineers we’ve talked to that “at least half” of
all system defects originate in the requirements. Given the strong emphasis on the build phase amongst quality tool suppliers,
which Jones x (much more recently) points out, and IAG’s finding iv that “68% of companies suffer from poor requirements
specifications practices,” we wonder if Martin’s estimate might now be on the low side.

ⅳ 	 Ellis, Keith, Business Analysis Benchmark: The Impact of Business Requirements on the Success of Technology Projects,
 IAG Consulting, October 2008.

ⅴ	 Singh, S. and Saikia L., Ambiguity in Requirement Engineering Documents: Importance, Approaches to Measure and Detect,
 Challenges and Future Scope, IJARCSSE, October 2015.

ⅵ	 Mich, Luisa, et al, Market research for requirements analysis using linguistic tools, Springer, Requirements Engineering, January 2004.

ⅶ 	 NASA Systems Engineering Handbook (Rev. 1), NASA, December 2007.

ⅷ 	 INCOSE Requirements Working Group, Guide for Writing Requirements, INCOSE, July 2015.

ⅸ 	 21 Top Engineering Tips for Writing an Exceptionally Clear Requirements Document, QRA Corp, June 2016.

ⅹ 	 Jones, Capers, Software Defect Origins and Removal Methods, Namcook Analytics, December 2012.

ⅺ 	 Wilson, H., Rosenberg, L., Hyatt, L., Automated Analysis of Requirement Specifications, ICSE, May 1997.

ⅻ 	 Kof, Leoinid, Natural Language Processing for Requirements Engineering: Applicability to Large Requirements Documents,
 Requirements Engineering, August 2004.

ⅻⅰ 	 Sateli, B, et al, Can Text Mining Assistants Help to Improve Requirements Specifications?, MUD, October 2012.

ⅺv 	 Singh, S. and Saikia L., Ambiguity in Requirement Engineering Documents: Importance, Approaches to Measure and Detect,
 Challenges and Future Scope, IJARCSSE, October 2015.

ⅹv 	 Mich, Luisa, et al, Market research for requirements analysis using linguistic tools, Springer, Requirements Engineering, January 2004.

ⅹvⅰ 	 NASA Systems Engineering Handbook (Rev. 1), NASA, December 2007.

ⅹvⅰⅰ 	 INCOSE Requirements Working Group, Guide for Writing Requirements, INCOSE, July 2015.

ⅹvⅰⅰⅰ 	 21 Top Engineering Tips for Writing an Exceptionally Clear Requirements Document, QRA Corp, June 2016.

ⅺⅹ 	 Jones, Capers, Software Defect Origins and Removal Methods, Namcook Analytics, December 2012.

ⅹⅹ 	 Wilson, H., Rosenberg, L., Hyatt, L., Automated Analysis of Requirement Specifications, ICSE, May 1997.

ⅹⅹⅰ 	 Kof, Leoinid, Natural Language Processing for Requirements Engineering: Applicability to Large Requirements Documents,
 Requirements Engineering, August 2004.

ⅹⅹⅰⅰ Sateli, B, et al, Can Text Mining Assistants Help to Improve Requirements Specifications?, MUD, October 2012.

REFERENCES

20qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

