
The Easy Approach
to Requirements Syntax:
The Definitive Guide

Introduction 4

A Tool for Clear Requirements 5

Why EARS is Becoming Popular in Requirements Engineering 5

How EARS Came To Be 6

Why Use EARS 7

The EARS Process 8

The EARS Patterns 9

The Key To EARS 12

The EARS Cardinality 14

Other Benefits of the EARS Format and Process 16

Introduce EARS 18

How to Implement EARS in Your Organization 19

Challenges of Using EARS 20

Obstacles Encountered When Applying EARS 2 1

Knowing When Not to Use EARS 23

Encouragement and Advice From Seasoned Practitioners 24

Conclusions 28

In Summary 29

About 30

References 3 1

TABLE OF CONTENTS

3qracorp.com2qracorp.com

https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp

Well, fortunately, requirements engineer Alistair

Mavin and some of his colleagues faced a similar

challenge just a few years ago while he was work-

ing at Rolls-Royce. Thanks to that challenge, they

discovered and developed a methodology you can

use to:

• Write clear, concise, unequivocal natural

language requirements very easily

• Improve requirements engineering workflows

• Simplify your own life and the lives of those

who work from your specifications

This methodology is called the Easy Approach

to Requirements Syntax – or ‘EARS’ for short.

Mavin says EARS is not a template. It’s a philosophy

– a way of thinking about requirements. He charac-

terizes EARS as a way to “gently constrain” natural

language to write better requirements.

Since the EARS methodology was first presented

to the 17th IEEE International Requirements

Engineering Conference in 2009, it has been

adopted by numerous organizations and included

in the requirements engineering (RE) curricula of

many universities. Mavin believes this is because

the EARS method imposes just a slight constraint on

natural language, while providing a simple, logical

method for constructing clear, concise, unambiguous

requirements.

“People like natural language,” says Mavin. “It’s their

natural way to communicate. It’s familiar, easy to use

and easy to understand. In contrast, people tend to

dislike formalisms. Formalisms complicate things.

Each new method is something more to learn,

if you’re not already familiar with it.”

EARS, on the other hand, is easy to learn and apply.

As we’ll see later, EARS uses a few keywords in ways

that are quite familiar. We’re already used to using

these keywords in the exact same ways in normal

speech, as well as in pseudocode and other forms

of logical expression. Most people find the EARS

syntax constructions intuitively obvious.

A TOOL FOR CLEAR REQUIREMENTS

WHY EARS IS BECOMING POPULAR IN REQUIREMENTS ENGINEERING

5qracorp.com

Imagine you’ve been chosen to lead a team that

will create the system and subsystem specifications

for a new product your company has decided

to develop.

You’ve been handed the initial top-level requirements

for the system. One glance tells you most of the

contributors have never been trained in writing

requirements. The product of several iterations of

input from numerous stakeholders, the document

is wordy, complex and confusing.

You and your team have been tasked with making

sense of this document: finding the real require-

ments, organizing them, refining them, filling in the

gaps. Your specifications must be easily understood

by both the engineers who will develop the hardware

and software for the system, and by the manage-

ment stakeholders who must approve them. Many of

the latter do not have technical backgrounds. And

several of the subsystem specs will be sent to

suppliers for bids. Thus, all the specifications must

be in natural language.

Finally, your management has mandated that all

requirements for the project must be clear, concise,

testable, traceable and correct. The objectives

they’ve set for you are to:

1. Significantly reduce requirements errors

 compared to previous projects

2. Lower the percentage of requirements

 errors that become implementation errors

3. Minimize error correction costs.

In other words, you’ve really got your work cut out.

So, what do you do? Where do you start? What tools

will you use?

Introduction

Easy
Approach to
Requirements
Syntax

4qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Alistair Mavin and his colleagues – though highly

experienced in systems and requirements engineer-

ing – didn’t set out to create a new requirements

notation. Instead, the notation emerged from their

work serendipitously.

Mavin’s team were analyzing requirements from

the European Aviation Safety Agency (EASA)

Certification Specification for Engines (CS-E).

Specifically, they were extracting requirements for

a new engine control system. The CS-E has evolved

through incremental updates over many years. These

repeated updates have resulted in long paragraphs of

prose containing a rich mixture of both complex and

simple requirements, along with design and verifica-

tion statements and supporting information. Much of

the document is written at an abstract level, relying

on lists and explanatory notes to add meaning.

As he and his colleagues were trying to put the

extracted requirements in the simplest terms possible,

Mavin noticed something interesting. He saw that all

the requirements they were writing were falling into a

very small number of patterns. Analyzing these pat-

terns, he found their requirements tended to contain

a handful of common elements in a common order.

Mavin and his colleagues refined these patterns,

reducing them to five, and called them the Easy

Approach to Requirements Syntax.

Thus, EARS was born out of engineering practice.

This practice was then turned into research, rather

than the other way around. Since then, thanks to the

widespread enthusiasm for his research, Mavin has

become an evangelist for EARS, conducting training

sessions at companies around the globe.

Despite the emergence of a range of formal, graphical

and model-based approaches to requirement spec-

ification, the vast majority of requirements

documents today are still written in natural language

(NL). In fact, even when MBSE is used, the initial,

high-level specifications for the system are always

written in natural language.

Unfortunately, unconstrained natural language

requirements can often be vague, ambiguous, overly

wordy and confusing. Such requirements can lead to

unexpected interpretations, erroneous implemen-

tations, costly scrap and rework and – in the worst

cases – disaster.

EARS helps solve that problem by bringing just

enough rigour to the process of writing requirements

in natural language.

In his training courses, Mavin is sometimes asked,

“Why use EARS?”

His answer: “Because people like natural language,

and they like things easy. Most people don’t want to

learn a specialized notation for writing requirements.

EARS uses natural language, and it’s easy.”

Besides being easy to use, EARS provides several

other basic benefits.

First, EARS makes a big impact on requirements quality

for very little overhead. With less than a day of training,

most engineers’ and analysts’ skill in writing require-

ments improves dramatically. With some follow-on

coaching, the techniques are quickly mastered. One

training class – and some practice – can transform

an organization’s RE culture.

Second, the five, compact EARS syntax patterns

– which we’ll look at shortly – greatly simplify

NL requirements. “In trying to improve something, we

often add to it – make it larger,” says Mavin. “Rarely

do we take the time to remove. It’s like that famous

quote often attributed to Blaise Pascal: ‘I have made

this letter longer than usual, only because I have

not had time to make it shorter.’” Such was the case

of the oft-updated CS-E with which Mavin and his

colleagues had to wrestle.

The EARS patterns force us to conform to a simple,

efficient format. They tear away extraneous words.

EARS virtually eliminates the temptation to add

extra information, because the patterns don’t allow it.

This makes the resulting requirements much clearer

and easier to understand, which saves the person

reading or implementing the requirement much time

and effort.

Finally, the resulting requirements are very similar to

each other, even if they are written by different peo-

ple. “I think the purpose of a written requirement is

to get the meaning into the reader’s head as quickly

as possible,” says Alistair Mavin. “If requirements

have fewer words in them, and they are similar in

form to requirements the reader is already familiar

with, they are easier to understand and assimilate.”

Some people claim this is a disadvantage of EARS.

They say that because all EARS requirements look

very much alike, they make it painful to read a

lengthy specification. Mavin’s reply: “Nobody ever

read a requirements document for pleasure. The

purpose of the document is not to be an entertain-

ing read. The purpose is that each requirement is

correct and states as simply as possible what the

system must do.

“Besides that, nobody reads an entire specification

in one go, unless they’re reviewing it. More often,

people will be reading the document a section

at a time, trying to understand the requirements for

a specific set of capabilities or circumstances.”

WHY USE EARS?

7qracorp.com

HOW EARS CAME TO BE

6qracorp.com

What you’ll learn in the remainder of this Guide

This guide is intended as a primer on EARS. The remainder of this document will cover:

1. Why you should use EARS

2. The EARS process

3. How to implement EARS in your organization

4. Challenges of using EARS

5. Advice from seasoned practitioners

6. Getting started with EARS

Alistair “Mav” Mavin

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

In this section, we’ll take an in-depth look at the EARS

syntax patterns, how to apply them, and the benefits

of using them. Then, we’ll discuss how to implement

EARS within your own organization.

As mentioned, there are five fundamental EARS patterns. Four of these are used to author requirements

for normal conditions, i.e., what we want the system to be and to accomplish. The fifth pattern is used for

requirements to mitigate unwanted events or user behaviour.

The four types of “normal” requirements are:

1. Ubiquitous requirements

2. State-driven requirements

3. Event-driven requirements

4. Optional feature requirements

Ubiquitous Requirements

Ubiquitous requirements are called that because they are always active. They are not invoked by an event

or input, nor are they limited to a subset of the system’s operating states.

The EARS syntax for ubiquitous requirements is:

 The <system name> shall <system response>.

(In the preceding and subsequent syntax definitions, clauses which change from requirement to requirement

are indicated within arrow brackets, as shown above.)

So, using the EARS syntax, a ubiquitous requirement will look like the following:

 The control system shall prevent engine overspeed.

A word of caution regarding ubiquitous requirements: Always question ubiquitous requirements when

writing or reviewing them. What at first seems ubiquitous may be state-driven. Check carefully that the

requirement is indeed true in all states in which the system must operate.

State-driven Requirements

State-driven requirements are active throughout the time a defined state remains true.

In EARS, state-driven requirements are identified by the keyword ‘WHILE’:

 WHILE <in a specific state> the <system name> shall <system response>

An example of a state-driven requirement written in EARS syntax is:

While the aircraft is in-flight and the engine is running, the control system

shall maintain engine fuel flow above ?? lbs/sec.

THE EARS PATTERNS

9qracorp.com

The EARS Process

The fifth type is simply called:

5. Unwanted behaviour requirements

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

10qracorp.com

Event-driven Requirements

Event-driven requirements require a response only when an event is detected at the system boundary.

Event-driven requirements are identified by the keyword ‘WHEN’ and have the following syntax:

 WHEN <trigger> the <system name> shall <system response>

Here’s an example of a state-driven requirement written using EARS syntax:

When continuous ignition is commanded by the aircraft, the control system shall

switch on continuous ignition.

Optional Feature Requirements

Requirements that apply only when an optional feature is present as a part of the system are indicated

by the keyword, ‘WHERE’. Optional feature requirements have the following syntax:

 WHERE <feature is included> the <system name> shall <system response>

So, if an engine control system is to have a provision for an optional overspeed protection function,

its specification may include a requirement like the following:

Where the control system includes an overspeed protection function, the control system

shall test the availability of the overspeed protection function prior to aircraft dispatch.

It’s possible, of course, that some optional features will have state-driven or event-driven requirements

imposed upon them. We’ll look at how to deal with such situations later, under Complex Requirements.

Unwanted Behaviour Requirements

‘Unwanted behaviour’ is a general term used to cover all situations that are undesirable. Since it is good

systems engineering practice to anticipate such undesirable situations and impose requirements to mitigate

them, EARS includes a provision for such requirements.

In EARS, unwanted behaviour requirements are indicated by the keyword combination ‘IF/THEN’.

They obey the following syntax, derived from the event-driven pattern:

 IF <trigger>, THEN the <system name> shall <system response>

Unwanted behaviour requirements are often imposed when the system must respond to a trigger under less

than optimum conditions, as in the following example:

 If the computed airspeed is unavailable, then the control system shall use modelled airspeed.

Unwanted behaviour is a major source of omissions in requirements, necessitating costly rework. Therefore,

it’s good RE practice to write unwanted behaviour requirements in a second pass, after you’ve written your

requirements for normal conditions. On this second pass, examine the ‘normal operation’ requirements

you’ve written to see if any unwanted conditions or inputs need to be mitigated.

The If/Then keywords provide a useful cue which tells readers this is a requirement for the system

to mitigate some unwanted event.

Complex Requirements

As engineers decompose top-level requirements into more detail, pure event-driven and unwanted

behaviour requirements become increasingly rare. Far more often, a specific set of one or more preconditions

defining a system state which must exist prior to the event or unwanted behaviour for it to trigger

the required system response.

Such complex requirements can be expressed using a combination of the EARS keywords Where, While,

When and If/Then using, in general, the following pattern:

 While <precondition(s)> when <trigger> the <system name> shall <system response>

Since the set of preconditions define a state in which the system must respond, the state-driven EARS

keyword ‘While’ precedes the list of preconditions. This is followed by either the event-driven keyword ‘When’

or the unwanted behaviour keyword ‘If/then’ to identify the trigger event, as in the following example:

While the aircraft is on the ground, when reverse thrust is commanded, the control system

shall enable deployment of the thrust reverser.

Using EARS, it is quite easy to see that in the preceding requirement the aircraft being on the ground

is a prerequisite (precondition) for the system selecting deploying the thrust reverser, and that the reverse

thrust command is the trigger that makes that happen.

Finally, there may be times where an optional feature is applied to a complex requirement. In such

a requirement, the keyword ‘where’ should be used before that precondition, as we’ll see next.

11qracorp.com

Want to learn and practise your EARS writing

This guide is intended as a primer on EARS. The remainder of this document will cover…

1. Why you should use EARS
2. The EARS process
3. How to implement EARS in your organization
4. Challenges of using EARS

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

What differentiates EARS from other notations,

according to Mavin, is that it puts the elements of

each requirement statement in the most logical

order.

Each of the specific EARS syntax patterns we’ve just

examined conform to either of two generic syntax

patterns. The first, for desired behaviour requirements is:

Where <optional feature>, while <precondi-

tion(s)>, when <trigger> the <system name>

shall <system response(s)>

The second, for unwanted behaviour requirements is:

Where <optional feature>, while <precondi-

tion(s)>, if <trigger> then the <system name>

shall <system response(s)>

In both generic patterns, the clauses in bold text

are mandatory, while those in underlined italic text

are optional, depending upon whether a specific

requirement is contingent upon features, preconditions

or triggers.

Thus, except in the case of ubiquitous requirements,

the first element is always the keyword which iden-

tifies the type of requirement. Keywords are an

important feature of EARS. As we’ve seen, each

syntax, except the ubiquitous, has a very specific

keyword. The EARS keywords make it easy to

identify the nature of each requirement.

What’s more, the keywords always appear in the

same, logical order.

If a requirement only applies when a specific optional

feature is present, that should be made clear at the

outset, so the ‘Where’ phrase always comes first

in such requirements. In principle, there could be

requirements that apply only when multiple optional

features are present – which would necessitate mul-

tiple ‘Where’ elements – but in practice this is unlikely.

Next come any other preconditions, preceded by

the keyword ‘While’. Multiple preconditions may

be prerequisites for activating a specific system

response, so an EARS requirement may have multiple

‘While’ elements. Like the optional feature, these

preconditions must exist for the requirement to be

applied and before anything can happen. Thus, they

appear in the requirement statement before any

trigger and before the system response.

A trigger causes something to happen only if any

required preconditions are already true. Therefore,

the trigger should always follow any preconditions,

and always precede the system response. A trigger

will also be preceded by a keyword that indicates the

type of trigger it is: ‘When’ in the case of a desired

event, ‘If/Then’ in the case of unwanted behaviour.

The system being specified is what must provide the

required response (once any required preconditions

and/or trigger events have been detected). So, the

system name appears in the requirement statement

immediately before the word shall (or another imper-

ative verb, like must) but after any preconditions

and trigger.

Mavin also recommends explicitly naming the system

rather than using a generic name, like “system” or

“pump”. Such vague names can lead to confusion:

which “system” or which “pump” must deliver this

behaviour? The use of a specific system name is

important, because requirements may be copied,

pasted, used in multiple documents and sent to

multiple suppliers. A specific system name therefore

helps to avoid potential confusion, interface diffi-

culties and problems of scope, and ultimately, helps

lower program cost.

THE KEY TO EARS

qracorp.com

Finally, the system response – being the result of

the requirement – logically comes at the end of the

requirement statement. A requirement may include

multiple response elements if they are all caused by

the same set of feature, preconditions and trigger.

This temporal order makes requirements easier to

understand and helps specification users understand

those requirements quickly. It helps engineers and

analysts remember the EARS patterns and master

them more easily.

What’s more, the EARS syntax forces you to think

carefully about the requirements you write. As many

EARS practitioners and trainees have pointed out to

Mavin, “If you can’t write it in EARS, you probably don’t

fully understand it.” You need to give it more research

and thought. To successfully construct an EARS

requirement, you need to completely understand the

requirement before you write it down.

12

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

It should also be mentioned that the EARS patterns

have an inherent cardinality governing their shared

elements which must be observed and enforced. That

is, the numbers of preconditions, triggers, system

names and system responses specified within a given

requirement are bounded as follows:

• Preconditions: zero to many

• Triggers: zero or one

• System name: one

• System responses: one to many

In more detail:

• Any number of preconditions may be specified,

 as necessary, for an action (response).

• No more than one trigger event may be

 specified; if a trigger is specified, any other

 specified preconditions must be met prior

 to the trigger event, or the system shall not

 provide the specified response.

• If no trigger is specified, the system shall carry

 out the specified response while all preconditions

 are met, regardless of the order in which they

 are satisfied.

• Each requirement must specify a single system

 name which provides the specified action

 or actions(system response[s]) under the

 requirement’s prescribed conditions.

• For a single set of preconditions and/or trigger,

 a requirement must state at least one system

 response but may state multiple system responses.

So, in theory, it is possible for a requirement to require

any number of preconditions for a response and one

or any number more responses to a given set of

conditions. In practice, however, one should limit

the number of preconditions and system responses

within a single EARS requirement to two or three at

the most. Otherwise, the requirement can become

difficult to understand. When preconditions or

system responses are present in greater numbers,

it is usually best to make use of alternative formats,

such as tables or diagrams.

EARS CARDINALITY

EARS Pattern Cheat Sheet

Patterns

 Ubiquitous “Shall”

 State-Drivin “While”

 Event-Driven “When”

 Optional “Where”

 Unwanted “If/Then”

 Complex Combinations of the above

Cardinality

 Precautions 0 - Many

 Triggers 0 OR 1

 System Name 1

 Responses 1 - Many

15qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Makes Requirements Easy to Understand

The better people understand what a system’s

requirements are, the better the chance they have

of building a system that meets those require-

ments. EARS is designed to make requirements

easier to understand. That means organizations

using EARS will:

• Spend less time trying to understand what

 requirements mean

• Have a better understanding of what the system

 they’re building must do

• Waste less time and money fixing errors

Simplification of Requirement Structure makes

it Easier to Consider Other Issues

EARS only addresses how to write individual require-

ments correctly. It doesn’t directly address any other

issues, like coverage or traceability. However, because

the EARS syntax is very clear about preconditions

and triggers, it helps you understand and define the

states your system must support.

For example, if you have a requirement for “while in

flight”, what must the system do while on ground? If

“at or above low idle” is mentioned, what should hap-

pen “while below low idle”? If you have a requirement

triggered by an input in a given state, what should

happen when a different input is received? The

simple EARS formats make these issues more visible.

Ensures Requirements are Written in Active Voice

The use of active voice – where the entity

performing the action - is the subject of the sentence

is a standard best practice of requirements writing.

The widely-used INCOSE Guide for Writing

Requirements, for example, warns, “The onus for

satisfying the requirement is on the subject, not the

object of the sentence. If the entity responsible for

the action is not identified explicitly, it is unclear who

or what should perform the action, making verifica-

tion of that requirement very difficult… Often when

the phrase “shall be” is used, the statement is in the

passive voice.”

OTHER BENEFITS OF THE EARS FORMAT AND PROCESS

16

qracorp.com

Requirements in active voice include the form ‘the

<system name> shall’, as is specified in every EARS

pattern. In EARS, there is always an actor performing

an action; there is always an explicitly named system

that must deliver the system response. Therefore,

requirements that are written in EARS will always be

in active voice.

Helps Assure Coverage

While EARS doesn’t directly address the issue of

requirements coverage, it does help requirements

authors address not only the use cases directly

implied (normal operation), but also those use cases

where preconditions are missing, or the system

receives undesirable inputs (unwanted behaviour).

Because EARS includes syntax patterns for both

normal operation and unwanted behaviour, it

encourages the writing of requirements in two

passes. In the first pass, you write requirements

for normal operation. In the second, you examine

each requirement you wrote for normal operations,

looking for any unwanted inputs that might impact

the system under the same preconditions, and any

unwanted behaviour that might result from the

absence of a prescribed precondition, such as ‘air-

craft data unavailable’. You then write unwanted

behaviour requirements to mitigate those situations.

This two-pass technique is an important skill that

develops with practice. Learning it can be accelerated

through training and coaching.

Helps with System Decomposition

Any system that operates as a state machine must

be able to determine what operating state it is in.

To do that, it must be able to detect the inputs that

determine those states.

By forcing you to include only preconditions (states),

triggers (inputs) and system responses (outputs) –

by stripping away all unnecessary contextual mate-

rial - EARS helps you make sure all the necessary

inputs are available to fully define your precondi-

tions and triggers. In other words, EARS reveals

any missing elements that are needed for your

requirement to work.

If you can’t write a requirement in EARS, key information

– a precondition or a trigger – is missing. You need

to add that information to fully define your system.

17qracorp.com

EARS Writing Example:

Claim:

The software shall begin recording the call.

Claim rewritten with EARS:

When the user selects record, the mobile phone software shall begin a recording of the call screen

and of the audio from all participants.

If you can’t write a requirement in
EARS, key information – a precondition
or a trigger – is missing.

You need to add that information

to fully define your system.

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://qracorp.com/
http://qracorp.com
https://twitter.com/qracorp

The best way to introduce EARS into your RE process is

with a bit of expert training and coaching. Fortunately,

this process is neither lengthy nor expensive.

Introduce EARS
The best way to introduce EARS into your RE process is

with a bit of expert training and coaching. Fortunately,

this process is neither lengthy nor expensive.

Ideally, training should begin just before starting

the requirements definition phase of a new project.

You don’t want to train too far in advance of appli-

cation, as trainees are likely to forget much of what

they’ve learned. Of course, introducing EARS after

requirements definition has already begun will result

in rework of what has already been done, but many

organizations have seen great benefit in rewriting

existing requirements using EARS.

Alistair Mavin provides EARS training in half-day

or one-day sessions, complemented by some

individual coaching and follow-on support.

Mavin’s half-day training session is a comprehensive

examination of how to apply the EARS syntax pat-

terns through numerous examples and hands-on

practice, along with a few systems engineering and

requirements engineering principles. Following the

training, Mavin provides individual coaching by cor-

respondence. Trainees send Mavin ten requirements

they’ve written and apply his feedback to the next

ten requirements they write. Two or three iterations

are usually enough for students to gain a firm grasp

of the EARS patterns. After that, Mavin can provide

follow-on support via email to help trainees deal

with any troublesome requirements they encounter.

In his full-day training program, the morning session

consists of the same classroom presentation Mavin

conducts in his half-day training program. The after-

noon is dedicated to direct application, with hands-on

coaching, using requirements from the trainees’

current project. This leaves delegates with a working

knowledge of the EARS approach, having directly

applied it in their own domain. Follow-on support

can be provided by email, as in the half-day program.

No matter how you introduce EARS into your RE

process, you’ll want some follow-on coaching. While

EARS rapidly improves your requirements writing,

it’s not something you’ll immediately master. Expert

coaching will help you…

• Embed the EARS methodology

• Unlock the nuances of the EARS syntax

• Learn to deal with difficult requirements and

 unusual situations

HOW TO IMPLEMENT EARS IN YOUR ORGANIZATION

19qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Objections to Adoption (and how to handle them)

When introducing EARS into their RE environment,

some organizations may encounter objections from

within. These are among the most frequent obstacles

to adoption.

One objection Mavin hears often is that EARS is too

simple. Some people seem to think something sim-

ple can’t be effective. Mavin says one organization

he worked with even wanted him to change the ‘E’ in

EARS to ‘effective’ or ‘efficient’. ‘Easy’, they claimed,

made the method sound trivial.

But easy isn’t a dirty word. Many great ideas are very

simple. Think F = mA, V=IR, or e = mc2, to name

just a few. In fact, simplicity is what gives EARS its

power. Often – in writing requirements as elsewhere

– less is more. Putting requirements in simple, easily

recognized formats makes them much easier to under-

stand, which greatly reduces the chances of error and

misinterpretation.

Another frequent objection, especially engineers

who want to use MBSE, is that natural language

can’t be sufficiently precise. Some may reason they

can’t do any real analysis with NL requirements.

Mavin reasons EARS meets people where most of

them are today: writing NL requirements without

a robust process or specialized tools. Many people

who write requirements are uncomfortable with

rigorous methods and specialized notations. Most of

them are unfamiliar with MBSE tools, which require

a considerable investment in both acquisition and

training.

EARS adds just a small degree of formality to the

RE process – an amount of rigour most people can

feel comfortable with. EARS starts people think-

ing about states and triggers. Plus, it can be used

alongside more abstract concepts – like state

transition diagrams, activity diagrams and sequence

charts, among others – in situations which warrant

them.

In fact, EARS actually complements MBSE. “You

can’t specify a system using only boxes and arrows,”

says Mavin. “You need words within the boxes! EARS

is a bridge from the informal to the formal, but it is

also a good way to write the textual aspects of an

MBSE specification.”

EARS represents a relatively painless way to improve

your RE process. No special tools and only a small

investment in training are necessary to start writing

structured NL requirements in EARS syntax. The

results will be clear, concise, testable requirements

that are easy to read and understand, even for those

untrained in EARS.

CHALLENGES OF USING EARS

20qracorp.com

Besides the obstacles to adoption, you may run into

a few problems when first applying EARS. The

following are the most common.

Confusing Goals with Requirements

In requirements engineering, confusing stakeholder

goals with engineering requirements is a common

error which can result in unachievable requirements

and overdesigned systems. To avoid this pitfall, one

must understand the difference between goals and

requirements.

Goals, according to Mavin, are things stakeholders want.

They’re aspirational. They often represent ideal con-

ditions which are unattainable. They may even be

emotions. Mavin likens the elicitation of stakeholder

goals to a Spice Girls song: “Tell me what you want,

what you really, really want…”

A project’s stakeholders represent diverse perspec-

tives, both internal and external to an organization.

Thus, goals will vary from stakeholder to stakeholder

and many will conflict with one another. In fact, it’s

highly unlikely that all the stakeholder goals for

a given project, if any, can be fully achieved.

Goals are also independent of the system to be cre-

ated. They can be addressed to some degree by any

number of solutions, but they are not altered by the

chosen solution. Goals remain, regardless of which

solution is chosen.

For example, let’s say an aircraft manufacturer wants

a new jet engine. If the engine builder were to ask

the aircraft company what they want, the latter’s

goals for the new engine might be:

• Weigh 20% less than the previous engine

• Burn 20% less fuel per passenger mile

• Be 100% available

Meanwhile, the engine maker might have an internal

goal of reusing as many parts as possible from the

previous engine.

“Now, both parties really do want these things,” Mavin

says. “Each would love to have them if they could,

but they both know – barring some game-changing,

technological breakthrough – they can’t have them.

In designing a solution, however, these stakeholder

goals must be taken into account. Goals indicate the

desired direction. Each point toward an ultimate des-

tination or achievement, albeit an unattainable one.”

System requirements, on the other hand, are quite

different from goals. System requirements must

satisfy all stakeholders and must be agreed. There

can be no conflicts between them. They must all be

achieved, so it must be possible to verify they have

been achieved. In short, requirements must be met.

A common mistake is to try to translate goals

directly into requirements. “This is typically done in

one of two ways,” says Mavin. “First, some people –

even some who understand the difference between

goals and requirements – will simply shoehorn the

word “shall” into a goal and declare it a require-

ment. They’ll write, ‘The engine SHALL weigh 20%

less than the previous engine,’ or ‘The engine SHALL

burn 20% less fuel per passenger mile than the pre-

vious engine,’ without first determining what is truly

achievable.”

“The second way is to water down the goal into

something that is achievable. The danger here arises

when no one keeps a record of the original goal. It

may have been in an email or meeting minutes, but if

it never gets put into the requirements database or

the specification, it gets lost. Now you have a ‘shall’

statement, a requirement, but you’ve lost track of why

OBSTACLES ENCOUNTERED WHEN APPLYING EARS

21qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Use Notation that’s Appropriate for the User

Requirements should be written in the notation that’s

most appropriate for the user of the specification.

For a software requirements specification, for

example, the users are software developers. They’re

generally comfortable with abstract thinking, pseudo-

code, state transition diagrams, etc. For this audience

you might not use natural language requirements at

all. If there is a more appropriate methodology that

captures exactly what system must do and that ALL

the document’s users understand, use that method.

For a high-level system specification, however, you’ll

probably need to accommodate a mixed group of

users. Some of these will be unfamiliar with special-

ized notations. In such cases, it’s better to use only

as much rigour as all users are comfortable with.

EARS provides the rigour needed to make require-

ments clear, concise and testable in a form that’s

palatable to just about everyone.

Don’t Require the Same Notation for

Every Requirement

While EARS injects rigour into RE in a way that’s

accessible to everyone, not every requirement in a

predominantly natural language specification should

be written in EARS. Some requirements are simply

too complicated for the EARS format. A specification

may be 95% natural language requirements, but if the

other 5% could be more clearly expressed in another

format, then it is best to use a different format for

such requirements. There is no value in forcing a

requirement into text if it is simpler to convey the

meaning in another format. It is perfectly reason-

able to have some non-textual requirements within

a predominantly textual requirements specification.

Alistair Mavin suggests the following rule of thumb

when using EARS: If you’ve got more than three

preconditions, consider writing the requirement

in a different format. Four pre-conditions make for

a very long sentence. A table or some other notation

may make the requirement easier to understand.

There are also situations in which you would not

use EARS, regardless of the audience. One such sit-

uation is where the requirement is best expressed

as a mathematical formula. Another is where the

requirement is inherently graphical, as in the case of

a required flight envelope, for example.

Also note that EARS and modelling are potentially

complementary. For example, if you were writing

your requirements in EARS, you might use activity

diagrams to check that you’ve got full coverage of

your main usage scenarios. You might then choose

to include some of those diagrams in your require-

ments document, depending on how comfortable

your audience is with abstract thinking and modelling

conventions. If a part of your audience is not com-

fortable with models, however, it’s probably safer

to use text.

KNOWING WHEN NOT TO USE EARS

22qracorp.com

you wanted to achieve it in the first place. You’ve

fixed something as absolute need, when it may only

be a desire of one stakeholder.”

Mavin recommends making a clear distinction and

separation between goals and requirements. Make

a list of all known stakeholder goals, both internal

and external, and place it toward the beginning of

the requirements document. Put requirements in

a separate, subsequent section.

Managing stakeholder expectations is a large part of

requirements management. You need to explain to

stakeholders why each of their goals can’t be fully

achieved and how various goals conflict with one

another. Then you need to explain how your require-

ments are going to address their goals, not satisfy

them. You can’t possibly satisfy all customer goals.

Early False Precision

Early false precision is a problem that can occur

when rigour is introduced too early into the system

design process, that is, before needed information

becomes available. This can happen in MBSE when

values need to be inserted in a model before the true

values are known. It’s easy to lose track of such place

holders.

EARS allows you to postpone insertion of values that

need to be verified. Don’t be afraid to write ‘TBD’

or ‘TBC’ in early-stage EARS requirements until the

actual values can be confirmed. However, it is good

practice to have a documented plan for when and

by whom these TBDs and TBCs will be replaced with

actual values.

23qracorp.com

When to and when not to use EARS

1. When the requirement extends complexity

2. If you have more than three preconditions

3. When requirements are mathematical formulas

1. When writing for audiences with different skill levels

2. If you have less than three preconditions

3. Requirements are to be structured and clear

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Dr. Jane Cleland-Huang – Professor of Software

Engineering, University of Notre Dame, US

Jane Cleland-Huang used to teach a graduate course

in requirements engineering at DePaul University.

Students had to do a large project which required

them to choose a system to define, identify real

stakeholders, and put together a requirement spec-

ification for it.

“I hated grading their projects, because the

requirements were always such a mess,” says

Cleland-Huang. “In no way were they unambigu-

ous, and they would have many pieces to them. It

was clear that students were having great difficulty

defining clear requirements.”

Then, Cleland-Huang found EARS. The next year,

instead of teaching the guidelines she had been

teaching, she decided to teach the EARS method.

“The quality of the requirements produced by each

student, even those whose first language was not

English, improved dramatically,” she says.

In end-of-term course appraisals, students fre-

quently mentioned that learning to use EARS was

one of the things they appreciated most about the

class. “Many students really liked the EARS method,”

says Cleland-Huang. “Several took it back into

their work environments and began applying it on

real projects. They found it a lot easier to write

requirements that way.”

Cleland-Huang cautions against going it alone.

“EARS is easy to use, but there are certain ways in

which you should use it,” she warns. “It’s very easy

to get a huge improvement in the way you write

requirements, but there are some subtleties that are

easy to get wrong. So, training is important.”

“It’s easy to get started with some basic training. Put

EARS to use,” she recommends. “Then get some fol-

low-up training, or coaching, where you analyze and

evaluate your requirements with a qualified instruc-

tor and look at ways you could improve them.

“There’s a very intuitive first step, but in looking

back at requirements you’ve written and getting

some expert feedback, you’ll often see better ways

in which you could have written the same require-

ments,” concludes Cleland-Huang. She says she

found ways she could improve her own requirements

while leading an EARS workshop with Alistair Mavin.

Philip Wilkinson – Systems Engineer, Rolls-Royce, UK

Philip Wilkinson has co-authored four papers on

EARS with Alistair Mavin. Coming from a safety

background, his first interest in requirements

stemmed from needing to know what safety require-

ments were being imposed on design engineers.

Soon, he became interested in the general issue of

requirements writing.

“I saw there was more to it than meets the eye;

writing requirements isn’t easy,” says Wilkinson.

“I wanted to know why a safety requirement I had

written – one that was clear to me – might not be

clear to someone else who had to implement it.”

When asked what he likes most about EARS,

Wilkinson cited three things.

First, it’s portable. EARS can be used at various

levels of requirements writing. No tools are needed

other than pencil and paper (or a document pro-

cessing program).

Second, it’s flexible. The small number of simple

patterns makes EARS easy to teach to business

analysts to help them write clearer high-level busi-

ness requirements. Meanwhile, engineers can use

those same EARS patterns – either by themselves

or in conjunction with a variety of other notations

– to craft detailed engineering requirements.

Third, very little training is needed – although

practice is essential and expert feedback is extremely

beneficial, he adds.

Wilkinson recommends getting started with a simple

course that introduces the importance of require-

ments, as well as the EARS method. It’s also helpful

to have a crib sheet on hand – like the one Mavin

hands out in his training courses – when first trying

to apply EARS.

Finally, students should discuss their first few EARS

requirements with an EARS expert. “You need some-

one available on-site for a couple of days, and some

on-going support afterward to help you make sure

you really understand what you’re doing,” says

Wilkinson. “The intuitive nature of the EARS pat-

terns often gets people into trouble if they try to

work with them strictly on their own, without expert

feedback.”

ENCOURAGEMENT AND ADVICE FROM SEASONED PRACTITIONERS

24qracorp.com 25qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Eero Uusitalo – Partner and Consulting Engineer,

Intoworks, Finland

As an engineering consultant, Eero Uusitalo helps his

clients meet established quality standards. Besides

reviewing their requirements documentation, he is

also involved in coaching his customers’ personnel,

so they can achieve a high level of quality from the

very beginning of a project.

Uusitalo has used EARS in situations ranging from

helping utility companies develop multi-billion-dollar

power plants to restating regulatory requirements so

they could be clearly understood. Uusitalo’s favour-

ite thing about EARS is that it can be presented to a

variety of stakeholders, and they’ll all understand the

resulting requirements without any training.

“In the context of designing a power plant, for

example, there is a huge variety of stakeholders

from several organizations. You need something

that’s readily understandable,” says Uusitalo.

“You can present EARS easily and show clear

upside immediately. It’s the easiest method I’ve

encountered for truly improving your requirements

documentation.”

For team leaders considering EARS, Uusitalo offers

several tips.

“First, it’s important to remember that not all kinds

of requirements are suited to expression in EARS,”

he says. “Requirements of some user-centric soft-

ware applications might better be expressed using

use cases, for example. Understand the context

where you’re applying EARS, and don’t try to use it

where it doesn’t fit.”

He also cautions that no method is a silver bullet.

“EARS is a method that’s easy to approach, but even

though it’s easy, it’s not trivial. There is a learning

curve involved. Progress along that curve can be

accelerated with training and coaching. If you find

that the premise is useful, but you’re having some

difficulties in applying it, it’s best to seek expert

help,” he advises.

Next, Uusitalo reminds us, it’s necessary to

iterate and improve our use of the method. “You

can’t expect that simply applying the EARS pat-

terns will magically make your requirements great.

Writing good requirements with EARS requires that

you do a thorough, up-front analysis of your system.

In so doing, you will also begin to understand the

strengths and weaknesses of the EARS method.

That said, using EARS is much better than relying on

unstructured natural language.”

Finally, Uusitalo recommends cultivating an in-house

expert or advocacy group. “As with any new tool or

method, it’s always good to have some champion

within your organization who really understands

the method and who can promote its use within the

organization,” he says.

26qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Most requirements specifications are written in

natural language to accommodate users who may

not be accustomed to more rigorous notations. But

when requirements are written in unconstrained

natural language, they are often wordy, unclear,

ambiguous and easily misinterpreted. This can lead

to errors that propagate through the system devel-

opment cycle, resulting in delay, costly scrap and

rework and, in the worst cases, disaster.

Conclusions
EARS – the Easy Approach to Requirements Syntax

– helps engineers and business analysts write natural

language requirements that are clear, concise, unam-

biguous and testable. EARS “gently constrains”

natural language in ways that are familiar and

comfortable to everyone. Plus, it requires no tools

and only a small amount of training, so barriers to

adoption are minimal.

Finally, EARS offers numerous benefits, including:

• Greatly improves requirements quality for very

 little overhead

• Makes requirements clearer, simpler, easier

 to understand

• Easy to learn

• Standardizes form of requirements across the

 organization with minimal effort

• Eliminates or greatly reduces most common

 types of requirements errors

• Helps assure requirements coverage of both

 normal and unwanted behaviour

• Assists system decomposition

• Reduces word count of requirements and

 specifications

• Injects rigour into the RE process in a

 palatable form

• Doesn’t require a specialist tool or notation

• Good for people whose first language

 is not English

29qracorp.com

IN SUMMARY

EARS Pro Tips

Remember the patterns:

• Ubiquitous requirements

• State-driven requirements

• Event-driven requirements

• Optional feature requirements

 And

• Unwanted behaviour requirements

Remember the cardinality:

• Preconditions: zero to many

• Triggers: zero or one

• System name: one

• System responses: one to many

Remember when NOT to use EARS:

• When the requirement extends complexity

• If you have more than three preconditions

• When requirements are mathematical formulas

Get Training and Coaching

• Visit www.alistairmavin.com

Author with QVscribe

• Visit qracorp.com/qvscribe

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
http://www.alistairmavin.com
http://qracorp.com/qvscribe

Alistair Mavin has been practicing requirements

engineering for over 20 years. A chartered engineer,

he is a member of IEEE and the British Computer

Society Requirements Engineering Specialist Group

committee.

Mavin is the lead author of the EARS notation.

Of his 24 published papers, eight have been on

EARS. He has provided training in requirements

engineering and EARS to numerous companies, pre-

sented guest lectures on those topics at many uni-

versities, and delivered EARS tutorials at more than

ten international conferences, including IEEE RE,

REFSQ, INCOSE and Sophist. Mavin has worked with

clients including BAE Systems, Bombardier, Daimler,

Honeywell and Rolls-Royce. His EARS method is

also used at Bosch, EADS (Airbus), Intel, Lockheed

Martin and Siemens and many other companies, as

well as being taught at several universities.

As an independent consultant, Mavin offers full-day

and half-day training sessions in EARS, EARS+, and

requirements engineering best practices. He also

provides coaching and follow-on support to help

trainees and organizations embed their learning and

deal with obstacles.

For inquiries regarding his services, Mavin can be

reached at mav@alistairmavin.com. Further details

on his services can be found on his website at:

www.alistairmavin.com.

30qracorp.com

ABOUT ALISTAIR MAVIN

QRA Corp’s mission is to accelerate the design

process across industries who are tackling the most

complex systems by empowering them to build

tomorrow’s safe, secure, and incredibly power-

ful products. QRA’s technology, patented toolsets

and capabilities have been used to avoid stressful

reworks, enable confident engineering, and find

previously undetected catastrophic flaws.

QRA’s requirements analysis tool, QVscribe, harnesses

Natural Language Processing to automatically apply

the best requirements analysis tactics by leading

industry experts. Automated requirements analy-

sis empowers engineering teams to build faster by

identifying errors where they matter most - in the

requirements. QVscribe and EARS complement

each other in helping organizations craft clear,

unambiguous requirements.

To discover how QVscribe can help your organization

improve and accelerate its requirements definition

and analysis processes, click here to schedule an

online demonstration.

To learn more about QRA and find additional

helpful resources for improving your requirements

and your RE processes, visit qracorp.com

ABOUT QRA CORP

31qracorp.com

ABOUT QVSCRIBE

REFERENCES

version 1

Jumpstart the authoring of your requirements with

fill-in-the-blank templates that are pre-configured

to follow the Easy Approach to Requirements

Syntax (EARS).

Whether your requirement is ubiquitous, state-

driven, event-driven, an optional feature, or an

unwanted behaviour – you can choose amongst a

subset of patterns that structure your requirement

to be simple, clear, and a dream to work with.

Learn why you should be using EARS and how to

get started right now! Visit qracorp.com/qvscribe

 Mavin, A., Wilkinson, P., Harwood, A.R.G. and

Novak, M.: Approach to Requirements Syntax (EARS), 17th

IEEE International Requirements Engineering Conference,

Atlanta, GA, USA, 2009.

 Mich, L., Franch, M., Novi, I.P.: Market research for

requirements analysis using linguistic tools. Requirements

Engineering, Vol. 9, pp. 4056, 2004.

 INCOSE Requirements Working Group, Guide for

Writing Requirements (Version 2.1), INCOSE, June 2017.

 Mich, L., Franch, M., Novi, I.P.: Market research for

requirements analysis using linguistic tools. Requirements

Engineering, Vol. 9, pp. 4056, 2004.

 Mavin, A., Wilkinson, P., BIG EARS: The Return of

the Easy Approach to Requirements Syntax, 18th IEEE

International Requirements Engineering Conference, Sydney,

NSW, Australia, 2010.

 Ibid.

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

To learn more about QVscribe, visit qracorp.com/qvscribe

qracorp.com

version 3

https://qracorp.com
https://twitter.com/QRACorp?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.linkedin.com/company/quantum-research-analytics
https://www.youtube.com/channel/UCzCrMEqZhkfniev3aMIm7aw
http://qracorp.com

