
Aerospace
Requirements
Guide & Checklist
The 10 Essential Best Practices
for Assuring do-178C Compliance

DO-178C doesn’t specify a specific software process. Instead,

it creates a flexible development framework designed to lead

to system certification by relevant authorities. DO-178C specifies

software lifecycle process objectives, along with activities for

meeting those objectives. It also provides guidance for tailoring

process objectives and activities to the level of safety the

software must provide and for collecting evidence to show

the process objectives have been met.

Software Considerations in Airborne Systems and Equipment Certification, better known as DO-178C,

has in recent years become the de facto standard for avionics software development.

As its title implies, DO-178C doesn’t specify a specific software process. Instead, it creates a flexible

development framework designed to lead to system certification by relevant authorities. DO-178C speci-

fies software lifecycle process objectives, along with activities for meeting those objectives. It also provides

guidance for tailoring process objectives and activities to the level of safety the software must provide

and for collecting evidence to show the process objectives have been met.

While DO-178C focuses on the software development process, it has implications at the system level, as well.

In particular, the software requirements process is directly impacted by the system requirements process,

which dictates the high-level software requirements.

This guide describes ten requirements engineering (RE) best practices aerospace organizations can apply

to help assure their avionic software complies with DO-178C. The accompanying checklist is meant to help those

organizations embed these best practices, both within their RE process and in the minds of their engineers.

INTRODUCTION

3qracorp.com

Paragraph 5.1 of DO-178C provides guidance for the

software requirements process. It’s first two

recommendations are:

• “The system functional and interface require-

ments that are allocated to software should

be analyzed for ambiguities, inconsistencies

and undefined conditions.”

• “Inputs to the software requirements process

detected as inadequate or incorrect should

be reported as feedback to the input source

processes for clarification or correction.”

Since DO-178C focuses on building software

processes that assure adequate safety, it’s a good

idea to have solid, well-documented system-level

RE processes feeding your software processes. You

should be able to show certification authorities

you have standardized, repeatable processes that

comply with their standards.

Your requirements analysis process documentation

should provide an overview of the process and a

description of each step. Describe the steps in terms

of entry and exit criteria, procedures, tools to be used

in your analysis, and any data or reports that are to

be produced.

Further recommendations for this process will

be provided throughout the remainder of this guide.

To comply with DO-178, your software requirements

and design processes must demonstrate traceability.

High-level software requirements must trace to sys-

tem requirements. Low-level software requirements

to high-level requirements, and so forth.

It’s important to plan how you will do this and to be

able to show how you do it.

Decide what tool or tools you are going to use to

maintain and demonstrate traceability. All commer-

cially available requirements management (RM) tools

have facilities for this. If you choose such a tool, be

sure you understand its traceability mechanisms.

If you use a custom-built database or document-based

RM system, your organization must define its own

requirements traceability system. Typically, this is done

by assigning a “unique identifier” number or code to

each requirement and building tables or matrices that

demonstrate the traceability of each requirement

—both upward to its original source requirement

and downward to the verification process.

1. DOCUMENT YOUR PROCESS FOR REQUIREMENTS ANALYSIS AND REVIEW

2. DEFINE YOUR METHODS FOR ASSURING REQUIREMENTS TRACEABILITY

4qracorp.com

https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

5qracorp.com 6qracorp.com

In paragraph 5.1.2, DO-178C warns: “High-level

software requirements should also be stated in quan-

titative terms with tolerances where applicable.” This

is just a more detailed way of saying requirements

should be verifiable.

To be verifiable, functional requirements need

to meet two criteria.

First, functional requirements should be stated

in terms of the inputs and outputs of the system being

specified. System inputs and outputs are quantities,

therefore quantifiable. This “black box” approach

permits verification by testing and other methods,

while leaving developers free to design their software

as they see fit. To verify compliance with such black

box requirements, testers need only apply the speci-

fied input quantities and compare the actual outputs

with those specified.

Secondly, as stated in the DO-178C requirement

above, tolerances should be specified where appli-

cable. This applies not only to input and output

quantities but also to system reaction times, as the

latter need to account for data transmission rates

and latencies.

For example, if your Engine Monitor Unit (EMU) must

set a specific bit in a specific MIL-STD-1553B mux

bus message any time a certain analog input exceeds

a certain value, you’ll need to include tolerances for (1)

how long the input threshold needs to be exceeded

(to account for how frequently the EMU reads the

analog input and, perhaps, to filter out some harm-

less noise in the signal), and (2) the tolerance for

latency between the input threshold being exceeded

and the bit being set on the bus (to account for the

frequency at which the bus message is transmitted).

If the EMU’s output message is transmitted every

20 milliseconds (ms), such a requirement might

take the following form: If Unit_Overtemp_Analog

exceeds 250° C for more than 3 seconds, the EMU

shall set the Unit Overtemp bit (Msg 04, Word 1, Bit

14) to 1 within 20 ms. A second requirement speci-

fying when the Overtemp bit output shall be reset

to 0 would also be required.

4. STATE REQUIREMENTS IN VERIFIABLE, QUANTITATIVE TERMS

Another DO-178C “activity” (or requirement), from

paragraph 5.1.2, drives several of the best practices in

this document: “The high-level requirements should

conform to the Software Requirements Standards

and be verifiable and consistent.”

To assure that your requirements are consistent,

you need to define your criteria for evaluating

requirements.

These criteria should include rules for the use

of imperatives like shall, will, must and should—which

of these are allowed and what each means in the

context of the requirements document. Your criteria

will also specify:

• The form and placement of unique identifiers

in requirement statements

• Any templates to be used in forming

requirement statements

• Words to avoid or to use with caution due

to their tendency to introduce ambiguity

• How rationale and other explanation should

be separated from the requirement statement

If you use a requirements analysis software tool,

it will likely come initialized with a default set of

evaluation criteria. You should adjust these settings

to match your organization’s own criteria.

You may need to reference applicable documents.

For example, your organization might decide to base

your analysis criteria on those listed in the INCOSE

Guide for Writing Requirements. Or you might adopt

the Easy Approach to Requirements Syntax (EARS)

as templates for your requirement statements. If so,

you should reference those documents in your

process documentation.

Some of the best practices that follow provide

additional criteria for evaluating requirements.

3. DEFINE YOUR CRITERIA FOR
EVALUATING REQUIREMENTS

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
http://qracorp.com/incose-requirements-guide/(opens in a new tab)
http://qracorp.com/incose-requirements-guide/(opens in a new tab)
http://qracorp.com/easy-approach-to-requirements-syntax-ears-guide/(opens in a new tab)

7qracorp.com

To ensure requirements can be objectively verified,

it’s important they be specified in unequivocal terms.

Stakeholders must have a mutual understanding of

the terms used within the specification and of the

units of measurement to be used in requirement

expressions.

For example, in a project using the metric system,

an input quantity expressed in pounds in a func-

tional or interface requirement might be misinter-

preted (and cause an error) in a calculation where

the other terms are in kilograms. It’s best to express

the input quantity and the requirement in the

accepted units of the project, rather than expect

the software designers to include a conversion

from pounds to kilograms.

Related best practices for enforcing consistent

use of terms and units include:

• Maintaining a glossary of technical terms used

in the project

• Maintaining a list of acceptable units, sorted

by quantity type (mass, volume, velocity, etc.)

• Checking requirements against those lists to

make sure terms and units are used correctly

Implementing this best practice can be greatly

simplified through automation with an analysis tool

that tracks accepted terms and units. We’ll dive

deeper into analysis automation in best practice #8.

5. ENFORCE CONSISTENT USE OF UNITS AND TERMS

Another DO-178C recommendation is “The high-level

requirements should not describe design or verifica-

tion detail except for specified and justified design

constraints.” This is a well-known best practice

in requirements engineering.

System designers should not be limiting software

designers’ options any more than necessary.

Software developers need freedom to do what’s best

for the overall project design.

Besides that, including implementation detail

in functional requirements creates problems in verifi-

cation. It clutters requirements with details that can’t

be verified by checking system response. Functional

requirements that don’t express their input/response

relationships clearly are more likely to be misinter-

preted by both software developers and verification

engineers.

To give an example, let’s say you’re stating

a requirement on the mission computer (MC) of

a multi-role fighter aircraft for timing the release

of a new air-to-surface weapon with a unique, multi-stage

ballistic profile. You’ve received the ballistics algorithm

for the weapon from your weapons technology

group. In your release timing requirement, you should

not state details of the algorithm as requirements

(e.g., the MC shall do this, then this, then this, etc.).

Those internal implementation details would not

be testable and may not be the best way to imple-

ment the algorithm in software. Instead, simply

state that when the requisite pre-conditions and trigger

condition inputs exist, the MC shall issue the weapon

release command output in accordance with the

algorithm specified in [the applicable reference

or directive]. This lets you’re your software developers

and your test team implement the algorithm in

whatever manner is most efficient for their

respective platforms, and it allows the implementation

to be tested objectively.

DO-178C specifies that, “Derived high-level

requirements and the reason for their existence

should be defined.” While this statement addresses

derived requirements, including rationale to justify

a requirement’s existence or clarify its meaning

is a good idea when needed.

It’s also important that rationale and other

explanation doesn’t detract from the clarity of the

requirement. Lack of clarity increases the risk of

misinterpretation. Therefore, explanatory text should

be segregated from the requirement statement itself.

How? Place the rationale in a subsequent paragraph,

separate from the requirement statement. Start the

paragraph with a label or prefix, such as ‘Rationale:’,

‘Comment:’ or ‘Note:’, and don’t include a unique

identifier. The prefix and the lack of an identifier code

will clearly separate the rationale from the require-

ment. This simplifies the requirement statement while

clarifying its meaning.

6. DO NOT SPECIFY IMPLEMENTATION DETAILS IN FUNCTIONAL REQUIREMENTS

7. INCLUDE RATIONALE, BUT SEGREGATE IT FROM THE REQUIREMENT STATEMENT

8qracorp.com

When performed manually, requirements analysis

has long been a time-consuming and tedious task.

As airborne software had grown exponentially in size

and complexity over the past decades, the problem

has grown exponentially worse.

Traditionally, analysis of requirements written in natural

language has been performed manually, in two steps.

First, the requirements authoring team pores over the

requirements document, often with the aid of a review

guide or checklist—the proverbial fine-tooth comb. Then

the document undergoes a formal review involving all

the relevant stakeholders. Both steps are labor-intensive

procedures that have a significant impact on schedule

and budget.

Fortunately, this task can now be streamlined using

software tools built specifically for analysis of natural

language requirements.

Modern requirements analysis tools, like QRA’s QVscribe,

help engineers and analysts find and correct require-

ments errors by automatically highlighting questionable

uses of imperatives, potentially ambiguous words and

phrases, unauthorized units of measurement, and other

possible flaws that can lead to misinterpretation.

These tools also generate reports that can be used

as artifacts of process fulfillment. Ultimately, they reduce

schedule impact and free engineers from the tedious

side for requirements analysis, leaving them more time

for tasks that truly require their expertise.

To gain a better understanding of how these tools

automate the requirements analysis process, consult our

free guide: Automating the INCOSE Guide to Writing

Requirements.

8. AUTOMATE YOUR REQUIREMENTS ANALYSIS PROCESS

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://qracorp.com/qvscribe/
https://qracorp.com/incose-requirements-guide/
https://qracorp.com/incose-requirements-guide/

9qracorp.com 10qracorp.com

For requirements to be consistent, as DO-178C requires,

there can be no conflicts between them.

Unfortunately, when large numbers of requirements

are elicited from a host of diverse stakeholders then

developed and augmented with derived requirements,

it’s only natural that conflicts arise. Finding and elimi-

nating such conflicts in a large, complex requirement

set can be a real chore.

One way to eradicate requirement conflicts

is to compare requirements that have similar wording.

And while it’s possible to do so with manual string

searches, finding similarly worded requirements

can be greatly simplified and accelerated using

a requirements analysis tool.

For example, QVscribe’s requirement similarity feature

allows users to quickly find and compare similar require-

ments. By adjusting the degree of similarity to maximum,

you can first find and eliminate duplicate requirements.

Then, by reducing the degree of commonality, you can

cast a wider net to identify and correct requirements

that conflict with one another.

DO-178C defines derived requirements as

“Requirements produced by the software develop-

ment process which (a) are not directly traceable to

higher level requirements, and/or (b) specify behavior

beyond that specified by the system requirements

or the higher level software requirements.”

Depending on your process, derived high-level

software requirements may be defined by systems

engineers, software developers, or both. In any case,

DO-178C requires that these be “provided to the

systems processes,” including the system safety

assessment process and the requirements analysis

process.

In other words, you’ll want to apply your documented

requirements analysis process (and all our previ-

ous recommendations) to every high-level software

requirement you define.

DO-178C is all about having a high-quality process

for developing safe airborne software. In this article

we’ve listed our top ten RE best practices for assur-

ing compliance with DO-178C—those that apply

directly to its explicit requirements. But we could list

many more.

Continue to improve your software requirements

definition process. Seek out and adopt RE best

practices from other sources.

Sources we recommend include the INCOSE Guide for

Writing Requirements mentioned earlier and our own

21 Top Engineering Tips for Writing an Exceptionally

Clear Requirements Document, which you can

download here.

9. ELIMINATE CONFLICTS BETWEEN REQUIREMENTS 10. CYCLE DERIVED REQUIREMENTS THROUGH YOUR ANALYSIS PROCESS

BONUS TIP: REFINE YOUR PROCESS WITH ADDITIONAL RE BEST PRACTICES

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

1) Document your process for requirements analysis and review

2) Define your methods for assuring requirements traceability

3) Define your criteria for evaluating requirements

4) State requirements in verifiable, quantitative terms

5) Enforce consistent use of units and terms

6) Do not specify implementation details in functional requirements

7) Include rationale, but segregate it from the requirement statement

8) Automate your requirements analysis process

9) Eliminate conflicts between requirements

10) Cycle derived requirements through your analysis process

11) Refine your process with additional RE best practices

Aerospace
Requirements Checklist

qracorp.com

version 1

To learn more about QVscribe, visit qracorp.com/qvscribe

qracorp.com

https://qracorp.com
https://twitter.com/QRACorp?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.linkedin.com/company/quantum-research-analytics
https://www.youtube.com/channel/UCzCrMEqZhkfniev3aMIm7aw

	Aerospace Checklist
	Aerospace Requirements Guide & Checklist

