
It’s Time to Start
Using Formal Methods
FOR ENGINEERING EMBEDDED SYSTEMS

Between 1985 and 1987, a radiation therapy device called the Therac-25 was involved in at least six incidents

in which the device delivered massive overdoses of radiation. The patients involved suffered radiation burns

and symptoms of radiation poisoning. Three of those patients eventually died. All because of a latent software

bug. A race condition that had gone undetected. A test case no one had thought to define.

Thirty-five years have now passed since the Therac-25 was brought to market in 1982. In that time, the volume

and complexity of software in embedded systems has grown enormously. More and more of that software has

become mission-critical and safety-critical. If embedded systems are to function effectively and safely, that

software must be extremely reliable.

To meet ever-increasing reliability demands, new methodologies for specifying, designing and coding the

software in embedded systems – methods like model-based design – have evolved. Yet software verification,

for the most part, has remained rooted in the same methods that were used to test the Therac-25. We’re still

defining test cases and monitoring test coverage. In other words, our procedures for verification of software

have not kept pace with our advances in designing and implementing it.

As the complexity of embedded systems and their reliance on software for mission-critical and safety-critical

functions continue to grow, the organizations that develop these systems will eventually be forced to adopt

more robust methodologies for their verification.

Fortunately, recent advances have made verification techniques known as formal methods a viable alternative

to traditional testing.

We believe the use of formal methods for model-based design verification will offer systems and software

engineers – and the companies they work for – a much higher level of confidence in the accuracy and robust-

ness of the embedded systems they design and produce.

We believe the time to begin transitioning to formal methods for model-based design verification is now. In

this article, we’ll explain why. But first, let’s look at what we mean by formal methods.

INTRODUCTION

2 3qracorp.com qracorp.com

In computer science, “formal methods” are tech-

niques that use mathematical logic to reason about

the behaviour of computer programs.

To apply formal methods in system verification, you

(or a tool built for the purpose) must translate your

system into a mathematical structure – a set of equa-

tions. You then apply logic, in the form of mathemat-

ical “rules,” to ask questions about the system and

obtain answers about whether particular outcomes

occur.

Formal methods go all the way back to Euclid. So,

almost all of us thus have some experience with them

from a secondary school geometry class. As you’ll

undoubtedly remember, we start with an axiom or

postulate, which we take as self-evident, and we use

logic to reason toward our theorem using “rules”

which had previously been proven true. If we always

apply only the logical transformations allowed, then

the conclusion we reach at the end – our theorem –

must be true. QED.

Formal methods for engineering computer systems

work in much the same way.

In computer science, formal methods really kicked off

– on a theoretical basis – in the late 1960s and early

‘70s, when widespread use of computing was still in

its infancy. Theoretical mathematicians were observ-

ing computer programming, still relatively simple

at the time, and saying, Hey, that’s a mathematical

structure! I can apply set theory to that!

Tony Hoare is generally credited with introducing

formal methods to computer science with his paper

An Axiomatic Basis for Computer Programming and

his invention of Hoare logic. Hoare logici and similar

formal methods work much like algebra. They even

make use of algebraic laws, like the associative, com-

mutative and distributive properties. You apply the

same transformation on both sides of the equal sign,

and both sides of the equation remain equal.

Let’s say you want to prove a specific output of your

system never goes above a certain value. Using for-

mal methods, you would apply your chosen set of

rules to prove your assumption – your requirement

– is true. In the end, if you’ve applied your algorithms

correctly, and if you find that, indeed, your selected

output never exceeds that specified value, then, as

A BRIEF HISTORY OF FORMAL METHODS

EARLY USE OF FORMAL METHODS FOR ENGINEERING APPLICATIONS

4 5qracorp.com qracorp.com

Image 1: Tony Hoare introducer of formal methods to computer science.

Formal methods didn’t gain much traction with

industry until the 1990s. Before then, computers and

computer programs were relatively simple, while for-

mal methods were primitive and difficult to apply.

Testing remained the most efficient means of system

verification.

Then, programming errors began getting companies

into serious trouble.

Not long after the Therac-25 catastrophe, disaster

struck AT&T’s global long-distance phone network.

On January 15, 1990, a bug in a new release of switch-

ing software caused a cascade of failures that brought

down the entire network for more than nine hours. By

the time the company’s engineers had resolved the

problem – by reloading the previous software rel –

AT&T had lost more than $60 million in unconnected

calls. Plus, they’d suffered a severe blow to their rep-

utation – especially amongst customers whose busi-

nesses depended on reliable long-distance service.

Four years later, a bug was discovered in the

floating-point arithmetic circuitry of Intel’s high-

ly-publicized Pentium processor. This error caused

inaccuracies when the chip divided floating-point

numbers within a specific range. Intel’s initial offer –

to replace the chips only for customers who could

prove they needed high accuracy – met with such

outrage that the company was eventually forced to

recall the earliest versions. Ultimately, the Pentium

FDIV bug cost Intel some $475 million.

The Therac-25, the AT&T switching control software

and the Intel Pentium chip were all tested exten-

sively. Still, that testing failed to find the catastrophic

bugs in those systems. Today, due in large part to the

Pentium bug, formal methods verification is now a

standard practice at Intel ii, and is used routinely by

other manufacturers to verify IC chip designs. Yet

software developers lag far behind hardware makers

in the use of formal methods for embedded system

verification.

This discrepancy is due primarily to the difference

in an Euclidean proof, there is no question your the-

orem is true. You’re absolutely certain of it. You’ve

proven beyond a doubt that your system meets that

requirement.

In contrast, if you were to apply a representative set of

inputs to your system to test your assumption empir-

ically, you could never really be sure your assump-

tion was true. Unless, of course, your set of test cases

exercised all possible combinations of input values

and stored states which affect the selected output. A

daunting and exponential task in today’s embedded

software environment.

To illustrate this point, let’s look at another, very basic

example. Suppose you wanted to find the zeros of

the polynomial x2 + 5x +6. Now, you could try plug-

ging in values for x until you were satisfied you had

found all the zeros. “Or, you could simply solve the

quadratic equation (of the from ax^2+bx+c=0) with

the quadratic formula:

x=(-b +-sqrt(b2-4ac))/(2a)

which in this example gives the solution…

0 = x2 + 5x +6 = (x + 2)(x + 3).

Now, you’ve proven that the zeros of the equation are

-2 and -3. That’s how formal methods work.

between IC logic and modern software logic. The

logic in a CPU reduces to arrays of logic gates: ANDs,

NANDs, ORs, etc. It’s all Boolean. The formal methods

engines used for Boolean logic, such as satisfiability

solvers, or SAT solvers, are now very well understood

(thanks, again, to the Pentium bug, and to companies

who picked up the ball and ran with it). Formal veri-

fication of ICs requires very fast computers, but only

because the logic arrays are so vast.

Software is a whole different problem. Modern software

logic is more complicated than IC logic. It requires

more sophisticated mathematics. The solvers used

in formal methods verification of software, known as

satisfiability modulo theories SMT solvers, add math-

ematical constructs beyond Boolean logic.

SMT solvers have taken longer to mature. In fact,

they’re still evolving. For now, it is quite difficult

to apply formal methods to the full source code

of large-scale embedded applications. Converting

large, complex source files – like a flight-control

program, for example – into formal methods

language is still a daunting, arduous and extremely

time-consuming task.

But that doesn’t make formal methods software

verification impossible.

To apply formal methods to a large software program

today, you need to do one of two things. You can

apply them to small portions of the program, criti-

cal parts that must work without fail, for example. Or

you can apply them to an abstraction of the actual

implementation.

Model-based design is just such an abstraction.

It simplifies the representation of the system and

breaks it into interconnected blocks. This abstrac-

tion, in turn, simplifies both the task of translating the

design into formal methods language, and the task of

querying the system.

Recent breakthroughs, which we’ll discuss shortly,

as well as complete coverage of the design now

make this second approach the preferred one

for formal verification of embedded systems.

But before we discuss this approach further, let’s look

more closely at the reasons for applying it.

6qracorp.com 7qracorp.com

The amount of software in cyber-physical embedded

systems continues to grow. Systems like automobiles,

purely mechanical thirty or forty years ago, are now

bristling with processors running millions of lines of

code. More and more of that code is mission-critical and

safety-critical. Embedded programs are getting so big,

they’re becoming too difficult to test.

Traditional testing methods involving test cases and

coverage – methods that worked fine twenty or thirty

years ago, on simpler systems – don’t really work

anymore. The sheer volume and complexity of today’s

embedded software make testing a losing proposition.

It keeps getting harder and harder to prove that nothing

disastrous will go wrong.

Lack of confidence in testing is beginning to impede

innovation. Take the integration of self-driving cars with

computer controlled intersections. Scientists claim this

concept would eventually eliminate the need for traf-

fic lights, ease urban road congestion and save millions

of lives. Unfortunately, engineers we spoke with at the

Embedded Software Integrity for Automotive confer-

ence in Detroit last year told us that - while they have the

capability to build such a system – they literally cannot

solve the problem of how to verify it to a high enough

level of confidence. They wouldn’t be able to trust it. It

would just be too great a liability.

In other words, our engineering ideas and design

capacities are outpacing our ability to test the software

that controls them.

THE URGENT NEED FOR FORMAL METHODS IN EMBEDDED SYSTEM VERIFICATION

Formal methods represent a big shift away from how

most systems are being verified today. Making that

shift will require a significant expenditure, and for

now, it’s tough to make an economic justification for

it. An accountant might ask, “Couldn’t we just increase

our testing and still spend less?” And it would be hard

to argue with him. It’s difficult to calculate ROI… until

a catastrophe occurs.

On the other hand, companies who doggedly

continue with traditional testing risk getting left

behind. Organizations like NASA, Lockheed Martin

and Honeywell are gradually making the shift

to formal methods. Those who delay could find

themselves struggling to catch up, while losing

competitive advantage.

There is no real alternative in sight. Traditional

testing is simply not a viable method for verification

of tomorrow’s complex embedded systems. Disasters

like the Therac-25, the AT&T network collapse and

the Pentium FDIV bug will become more frequent in

the future, unless we shift toward formal verification

in embedded systems. Companies need to start look-

ing at formal methods on small projects or parts of

projects, and begin charting their migration to formal

methods verification.

Fortunately, three major breakthroughs are making it

far easier to adopt formal methods today.

The first of these breakthroughs is an exponential

improvement in SAT and SMT solvers and theorem

provers. These tools are now thousands of times

faster than they were just a few years ago. And new

solvers and theorem provers, like Microsoft’s Z3,

amalgamate different types of solvers to solve differ-

ent types of problems. They’re bringing together the

best research from around the world and putting it at

user’s fingertips.

Second, dramatic reductions in the cost of distributed

computing now let us throw much more computing

power at a problem for much less money. As a result,

a problem that may have taken an SMT solver eight

minutes to solve in 2012 takes only about two sec-

onds today.

And finally, the more widespread adoption of

model-based design is making it easier to apply

formal methods to a wider range of problems. This

developing market has given rise to the development

of a growing number of formal methods verification

tools, which are built for use with model-based

design applications like MathWorks’ Simulink.

WHY THE TIME IS RIGHT FOR FORMAL METHODS FOR ENGINEERING EMBEDDED SYSTEMS

8

Without the new tools just mentioned, translating a

Simulink model into solver language would be slow,

tedious work, and the result would likely not be very

robust. Plus, solver output tends to be difficult to

interpret for someone without a practiced eye.

With these new tools, on the other hand, the process

of translation is automated and accelerated, while

interpretation is greatly simplified and far more intuitive.

Take QRA’s new tool, QVtrace, for example. To start

the process, you simply input your Simulink model into

QVtrace. QVtrace automatically translates the model

into solver language. Then, to verify your model, you

pose questions to QVtrace based on your system’s

requirements. This is the largest task of the process, as

it involves translating each requirement into QVtrace’s

mathematical requirements language, QCT. Once you’ve

input a requirement, you just click the Analyse button

and QVtrace solves the model for the requirement.

When QVtrace finishes solving for the input requirement,

it will return one of two things. It will either provide con-

firmation (and thus, verification) that the model meets

the requirement, or it will provide a counterexample.

If the design fails to meet the requirement, QVtrace will

supply a counterexample in the form or a set of inputs

that would cause the system to violate the requirement.

It also visually highlights the parts of the model involved

in the violation of the requirement. This is the “trace” in

QVtrace. This last feature focuses your search, helps you

find bugs faster, and expedites correction and verifica-

tion of your design.

One of the biggest advantages of formal methods

verification tools like QVtrace, is that they find those “odd”

cases that testing often misses. Cases that take many

time steps to trigger. Cases that testers wouldn’t think

of. Cases that cause disasters like those we mentioned

earlier. That’s because an SMT solver doesn’t formulate

test cases or reason about whether something is reason-

able to test. It simply solves the equation. It examines

everything that could affect the output.

And because they solve equations, formal methods

verification tools provide better coverage than even

automated test case generation. Test cases generated

by a modelling tool may test every path, but they won’t

cover every condition. Formal methods verification

tools offer complete coverage, because they convert

the model into a single (albeit enormous) equation and

solve the equation for each requirement.

Formal methods may also facilitate a new model-based

design process called correct by construction. To use

this process, you first model a small portion of your sys-

tem and then verify it using formal methods. You then

correct and reverify, until you’re one hundred percent

certain that part of the system functions perfectly. Then,

you add a bit more to the model and run a complete

verification again. Since you’ve already verified your

baseline model, you know that any errors you find will

be in the latest addition. You then correct, reverify, and

keep repeating the process until your design is complete.

Correct by construction should result in systems that are

better designed and more reliable.

Finally, by querying their models with formal methods

tools, engineers gain greater understanding of their

designs. Greater understanding will give them greater

confidence in their current design, and – in terms

of lessons learned – a stronger foundation to build

on in future projects.

THE ADVANTAGES OF FORMAL METHODS VERIFICATION TOOLS FOR MODEL-BASED DESIGN

9qracorp.com

State-of-the-art embedded systems have become

too big and too complex to be reliably verified using

traditional testing methods.

Traditional testing has simply become too risky from

a liability standpoint. The only viable alternative in

sight is formal methods verification.

To learn more about how QVtrace can help you make

the shift to formal verification, visit https://qracorp.

com/qvtrace/.

10qracorp.com 11qracorp.com

CONCLUSION

i Hoare, C. A. R., An Axiomatic Basis for Computer Programming,

Communications of the ACM, October 1969.

ii Kaivola, R. et al, Replacing Testing with Formal Verification in Intel Core i7

Processor Execution Engine Validation, Intel, Computer Aided Verification

Conference, June 2009.

Build with Confidence
Try QVscribe at qracorp.com/qvtrace

To learn more about QVtrace, visit qracorp.com/qvtrace

qracorp.com

