
It’s Time to Start
Using Formal Methods  
FOR ENGINEERING EMBEDDED SYSTEMS



Between 1985 and 1987, a radiation therapy device called the Therac-25 was involved in at least six incidents 

in which the device delivered massive overdoses of radiation. The patients involved suffered radiation burns 

and symptoms of radiation poisoning. Three of those patients eventually died. All because of a latent software 

bug. A race condition that had gone undetected. A test case no one had thought to define.

Thirty-five years have now passed since the Therac-25 was brought to market in 1982. In that time, the volume 

and complexity of software in embedded systems has grown enormously. More and more of that software has 

become mission-critical and safety-critical. If embedded systems are to function effectively and safely, that 

software must be extremely reliable.

To meet ever-increasing reliability demands, new methodologies for specifying, designing and coding the 

software in embedded systems – methods like model-based design – have evolved. Yet software verification, 

for the most part, has remained rooted in the same methods that were used to test the Therac-25. We’re still 

defining test cases and monitoring test coverage. In other words, our procedures for verification of software 

have not kept pace with our advances in designing and implementing it.

As the complexity of embedded systems and their reliance on software for mission-critical and safety-critical 

functions continue to grow, the organizations that develop these systems will eventually be forced to adopt 

more robust methodologies for their verification.

Fortunately, recent advances have made verification techniques known as formal methods a viable alternative 

to traditional testing. 

We believe the use of formal methods for model-based design verification will offer systems and software 

engineers – and the companies they work for – a much higher level of confidence in the accuracy and robust-

ness of the embedded systems they design and produce.

We believe the time to begin transitioning to formal methods for model-based design verification is now. In 

this article, we’ll explain why. But first, let’s look at what we mean by formal methods.

INTRODUCTION
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In computer science, “formal methods” are tech-

niques that use mathematical logic to reason about 

the behaviour of computer programs.

To apply formal methods in system verification, you 

(or a tool built for the purpose) must translate your 

system into a mathematical structure – a set of equa-

tions. You then apply logic, in the form of mathemat-

ical “rules,” to ask questions about the system and 

obtain answers about whether particular outcomes 

occur.

Formal methods go all the way back to Euclid. So, 

almost all of us thus have some experience with them 

from a secondary school geometry class. As you’ll 

undoubtedly remember, we start with an axiom or 

postulate, which we take as self-evident, and we use 

logic to reason toward our theorem using “rules” 

which had previously been proven true. If we always 

apply only the logical transformations allowed, then 

the conclusion we reach at the end – our theorem – 

must be true. QED. 

Formal methods for engineering computer systems 

work in much the same way.

In computer science, formal methods really kicked off 

– on a theoretical basis – in the late 1960s and early 

‘70s, when widespread use of computing was still in 

its infancy. Theoretical mathematicians were observ-

ing computer programming, still relatively simple 

at the time, and saying, Hey, that’s a mathematical 

structure! I can apply set theory to that!

Tony Hoare is generally credited with introducing 

formal methods to computer science with his paper 

An Axiomatic Basis for Computer Programming and 

his invention of Hoare logic.  Hoare logici and similar 

formal methods work much like algebra. They even 

make use of algebraic laws, like the associative, com-

mutative and distributive properties. You apply the 

same transformation on both sides of the equal sign, 

and both sides of the equation remain equal.

Let’s say you want to prove a specific output of your 

system never goes above a certain value. Using for-

mal methods, you would apply your chosen set of 

rules to prove your assumption – your requirement 

– is true. In the end, if you’ve applied your algorithms 

correctly, and if you find that, indeed, your selected 

output never exceeds that specified value, then, as 

A BRIEF HISTORY OF FORMAL METHODS

EARLY USE OF FORMAL METHODS FOR ENGINEERING APPLICATIONS
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Image 1: Tony Hoare introducer of formal methods to computer science.  

Formal methods didn’t gain much traction with 

industry until the 1990s. Before then, computers and 

computer programs were relatively simple, while for-

mal methods were primitive and difficult to apply. 

Testing remained the most efficient means of system 

verification.

Then, programming errors began getting companies 

into serious trouble.

Not long after the Therac-25 catastrophe, disaster  

struck AT&T’s global long-distance phone network. 

On January 15, 1990, a bug in a new release of switch-

ing software caused a cascade of failures that brought 

down the entire network for more than nine hours. By 

the time the company’s engineers had resolved the 

problem – by reloading the previous software rel – 

AT&T had lost more than $60 million in unconnected 

calls. Plus, they’d suffered a severe blow to their rep-

utation – especially amongst customers whose busi-

nesses depended on reliable long-distance service.

Four years later, a bug was discovered in the  

floating-point arithmetic circuitry of Intel’s high-

ly-publicized Pentium processor. This error caused 

inaccuracies when the chip divided floating-point 

numbers within a specific range. Intel’s initial offer – 

to replace the chips only for customers who could 

prove they needed high accuracy – met with such 

outrage that the company was eventually forced to 

recall the earliest versions. Ultimately, the Pentium 

FDIV bug cost Intel some $475 million.

The Therac-25, the AT&T switching control software 

and the Intel Pentium chip were all tested exten-

sively. Still, that testing failed to find the catastrophic 

bugs in those systems. Today, due in large part to the 

Pentium bug, formal methods verification is now a 

standard practice at Intel ii, and is used routinely by 

other manufacturers to verify IC chip designs. Yet 

software developers lag far behind hardware makers 

in the use of formal methods for embedded system 

verification.

This discrepancy is due primarily to the difference 

in an Euclidean proof, there is no question your the-

orem is true. You’re absolutely certain of it. You’ve 

proven beyond a doubt that your system meets that 

requirement.

In contrast, if you were to apply a representative set of 

inputs to your system to test your assumption empir-

ically, you could never really be sure your assump-

tion was true. Unless, of course, your set of test cases 

exercised all possible combinations of input values 

and stored states which affect the selected output. A 

daunting and exponential task in today’s embedded 

software environment.

To illustrate this point, let’s look at another, very basic 

example. Suppose you wanted to find the zeros of 

the polynomial x2 + 5x +6. Now, you could try plug-

ging in values for x until you were satisfied you had 

found all the zeros. “Or, you could simply solve the 

quadratic equation (of the from ax^2+bx+c=0) with 

the quadratic formula: 

x=(-b +-sqrt(b2-4ac))/(2a)

which in this example gives the solution…

0 = x2 + 5x +6 = (x + 2)(x + 3).

Now, you’ve proven that the zeros of the equation are 

-2 and -3. That’s how formal methods work.



between IC logic and modern software logic. The 

logic in a CPU reduces to arrays of logic gates: ANDs, 

NANDs, ORs, etc. It’s all Boolean. The formal methods 

engines used for Boolean logic, such as satisfiability 

solvers, or SAT solvers, are now very well understood 

(thanks, again, to the Pentium bug, and to companies 

who picked up the ball and ran with it). Formal veri-

fication of ICs requires very fast computers, but only 

because the logic arrays are so vast.

Software  is a whole different problem. Modern software  

logic is more complicated than IC logic. It requires 

more sophisticated mathematics. The solvers used 

in formal methods verification of software, known as 

satisfiability modulo theories SMT solvers, add math-

ematical constructs beyond Boolean logic. 

SMT solvers have taken longer to mature. In fact, 

they’re still evolving. For now, it is quite difficult 

to apply formal methods to the full source code 

of large-scale embedded applications. Converting  

large, complex source files – like a flight-control  

program, for example – into formal methods  

language is still a daunting, arduous and extremely  

time-consuming task.

But that doesn’t make formal methods software  

verification impossible.

To apply formal methods to a large software program 

today, you need to do one of two things. You can 

apply them to small portions of the program, criti-

cal parts that must work without fail, for example. Or 

you can apply them to an abstraction of the actual 

implementation. 

Model-based design is just such an abstraction.  

It simplifies the representation of the system and 

breaks it into interconnected blocks. This abstrac-

tion, in turn, simplifies both the task of translating the 

design into formal methods language, and the task of 

querying the system. 

Recent breakthroughs, which we’ll discuss shortly, 

as well as complete coverage of the design now 

make this second approach the preferred one 

for formal verification of embedded systems. 

But before we discuss this approach further, let’s look 

more closely at the reasons for applying it.
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The amount of software in cyber-physical embedded 

systems continues to grow. Systems like automobiles, 

purely mechanical thirty or forty years ago, are now 

bristling with processors running millions of lines of 

code. More and more of that code is mission-critical and 

safety-critical. Embedded programs are getting so big, 

they’re becoming too difficult to test.

Traditional testing methods involving test cases and  

coverage – methods that worked fine twenty or thirty 

years ago, on simpler systems – don’t really work 

anymore. The sheer volume and complexity of today’s 

embedded software make testing a losing proposition. 

It keeps getting harder and harder to prove that nothing 

disastrous will go wrong.

Lack of confidence in testing is beginning to impede 

innovation. Take the integration of self-driving cars with 

computer controlled intersections. Scientists claim this 

concept would eventually eliminate the need for traf-

fic lights, ease urban road congestion and save millions 

of lives. Unfortunately, engineers we spoke with at the 

Embedded Software Integrity for Automotive confer-

ence in Detroit last year told us that - while they have the 

capability to build such a system – they literally cannot 

solve the problem of how to verify it to a high enough 

level of confidence. They wouldn’t be able to trust it. It 

would just be too great a liability.

In other words, our engineering ideas and design  

capacities are outpacing our ability to test the software 

that controls them.

THE URGENT NEED FOR FORMAL METHODS IN EMBEDDED SYSTEM VERIFICATION



Formal methods represent a big shift away from how 

most systems are being verified today. Making that 

shift will require a significant expenditure, and for 

now, it’s tough to make an economic justification for 

it. An accountant might ask, “Couldn’t we just increase 

our testing and still spend less?” And it would be hard 

to argue with him. It’s difficult to calculate ROI… until 

a catastrophe occurs.

On the other hand, companies who doggedly  

continue with traditional testing risk getting left 

behind. Organizations like NASA, Lockheed Martin 

and Honeywell are gradually making the shift 

to formal methods. Those who delay could find 

themselves struggling to catch up, while losing  

competitive advantage.

There is no real alternative in sight. Traditional  

testing is simply not a viable method for verification 

of tomorrow’s complex embedded systems. Disasters 

like the Therac-25, the AT&T network collapse and 

the Pentium FDIV bug will become more frequent in 

the future, unless we shift toward formal verification 

in embedded systems. Companies need to start look-

ing at formal methods on small projects or parts of 

projects, and begin charting their migration to formal 

methods verification.

Fortunately, three major breakthroughs are making it 

far easier to adopt formal methods today.

The first of these breakthroughs is an exponential 

improvement in SAT and SMT solvers and theorem 

provers. These tools are now thousands of times 

faster than they were just a few years ago. And new 

solvers and theorem provers, like Microsoft’s Z3, 

amalgamate different types of solvers to solve differ-

ent types of problems. They’re bringing together the 

best research from around the world and putting it at 

user’s fingertips.

Second, dramatic reductions in the cost of distributed  

computing now let us throw much more computing 

power at a problem for much less money. As a result, 

a problem that may have taken an SMT solver eight 

minutes to solve in 2012 takes only about two sec-

onds today.

And finally, the more widespread adoption of  

model-based design is making it easier to apply 

formal methods to a wider range of problems. This 

developing market has given rise to the development 

of a growing number of formal methods verification  

tools, which are built for use with model-based 

design applications like MathWorks’ Simulink.

WHY THE TIME IS RIGHT FOR FORMAL METHODS FOR ENGINEERING EMBEDDED SYSTEMS
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Without the new tools just mentioned, translating a 

Simulink model into solver language would be slow, 

tedious work, and the result would likely not be very 

robust. Plus, solver output tends to be difficult to  

interpret for someone without a practiced eye. 

With these new tools, on the other hand, the process  

of translation is automated and accelerated, while  

interpretation is greatly simplified and far more intuitive. 

Take QRA’s new tool, QVtrace, for example. To start 

the process, you simply input your Simulink model into 

QVtrace. QVtrace automatically translates the model 

into solver language. Then, to verify your model, you 

pose questions to QVtrace based on your system’s 

requirements. This is the largest task of the process, as 

it involves translating each requirement into QVtrace’s 

mathematical requirements language, QCT. Once you’ve 

input a requirement, you just click the Analyse button 

and QVtrace solves the model for the requirement. 

When QVtrace finishes solving for the input requirement, 

it will return one of two things. It will either provide con-

firmation (and thus, verification) that the model meets 

the requirement, or it will provide a counterexample.  

If the design fails to meet the requirement, QVtrace will 

supply a counterexample in the form or a set of inputs 

that would cause the system to violate the requirement. 

It also visually highlights the parts of the model involved 

in the violation of the requirement. This is the “trace” in 

QVtrace.  This last feature focuses your search, helps you 

find bugs faster, and expedites correction and verifica-

tion of your design.

One of the biggest advantages of formal methods  

verification tools like QVtrace, is that they find those “odd” 

cases that testing often misses. Cases that take many 

time steps to trigger. Cases that testers wouldn’t think 

of. Cases that cause disasters like those we mentioned 

earlier. That’s because an SMT solver doesn’t formulate 

test cases or reason about whether something is reason-

able to test. It simply solves the equation. It examines 

everything that could affect the output.

And because they solve equations, formal methods  

verification tools provide better coverage than even 

automated test case generation. Test cases generated 

by a modelling tool may test every path, but they won’t 

cover every condition. Formal methods verification 

tools offer complete coverage, because they convert 

the model into a single (albeit enormous) equation and 

solve the equation for each requirement.

Formal methods may also facilitate a new model-based 

design process called correct by construction. To use 

this process, you first model a small portion of your sys-

tem and then verify it using formal methods. You then 

correct and reverify, until you’re one hundred percent 

certain that part of the system functions perfectly. Then, 

you add a bit more to the model and run a complete  

verification again. Since you’ve already verified your 

baseline model, you know that any errors you find will 

be in the latest addition. You then correct, reverify, and 

keep repeating the process until your design is complete. 

Correct by construction should result in systems that are 

better designed and more reliable.

Finally, by querying their models with formal methods 

tools, engineers gain greater understanding of their 

designs. Greater understanding will give them greater 

confidence in their current design, and – in terms  

of lessons learned – a stronger foundation to build  

on in future projects.

THE ADVANTAGES OF FORMAL METHODS VERIFICATION TOOLS FOR MODEL-BASED DESIGN
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State-of-the-art embedded systems have become 

too big and too complex to be reliably verified using 

traditional testing methods. 

Traditional testing has simply become too risky from 

a liability standpoint. The only viable alternative in 

sight is formal methods verification.

To learn more about how QVtrace can help you make 

the shift to formal verification, visit https://qracorp.

com/qvtrace/.
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CONCLUSION
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