
21 Top Engineering Tips
FOR WRITING AN EXCEPTIONALLY CLEAR REQUIREMENTS DOCUMENT

Because nobody likes building or using a poor requirements document.

Over the past year, our team has probed dozens of engineers and their

requirements documents to create the ultimate list of tips on how to write

requirements documents that are a dream to work with.

It has become clear that enormous numbers of engineering design errors

originate in the requirements document. And agreement on requirements

engineering best practices is fiercely debated. Everyone has their own opin-

ions, which differ widely. We’ve distilled the information from our research

and interviews into this one insight-packed guide that we hope will settle

some debates.

We’re also constantly looking for new information about requirements

engineering, and we’d love to hear your praise or criticisms of any of the

following tips mentioned!

1. Use a (Good) Requirements Document Template 5

2. Organize in a Hierarchical Structure 5

3. Use Identifiers to Your Advantage 6

4. Standardize Your Requirements Document Language 7

5. Be Consistent with Imperatives 8

6. Make Sure Each Requirement is Testable 8

7. Write Functional Requirements to be Implementation-Neutral 9

8. Rationale Statements are Always Appreciated 10

9. Remember that Directives are there to Help You 11

10. Follow Requirement Formatting Best Practices 12

11. Use Your EARS to Write Concise Requirements 13

12. Go Beyond Expected Events and Behaviour 14

13. Don’t Use Weak Words 15

14. Avoid Passive Voice 16

15. Use Negative Requirements Sparingly 17

16. Define Compatibility 17

17. Avoid Using Slash (/) Symbols 18

18. Don’t Fall into the Requirements Document Vagueness Trap 18

19. Write Requirements Documents from the Perspective of a Client or Manager 19

20. Evaluate the Requirements Document with a Diverse Team 19

21. Don’t Hand Off the Requirements Document for Verification Before Completing a Quality Check 20

INTRODUCTIONTABLE OF CONTENTS

3qracorp.com

https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp

Every requirements engineer we interviewed uses a

template when starting a new requirements docu-

ment. If you don’t, you should. And if you do, you

should make sure your template is a good one.

A requirements document template should have at

minimum a cover page, section headings, essential

guidelines for the content in each section and a

brief explanation of the version (change) manage-

ment system used to control changes made to the

document.

Your template should also include standardized

sections covering topics like verb (imperative)

application, formatting and traceability standards,

and other guidelines your organization follows

in documenting requirements and managing its

requirements documentation.

Standardized sections – or “boilerplate” as they are

often called – promote and facilitate consistency

across projects. This is a major benefit of templates.

These sections tend to remain little changed from

project to project, and from team to team within

a company – evolving only slowly over time with

changes in methodology and lessons learned – thus

providing a stable platform for consistent require-

ments development, employee education and

communication with customers.

To deliver a document that is easy to use from top to

bottom, organize your requirements in a hierarchical

structure. Hierarchical structures can include man-

ager–supplier, function–sub-function, mission–part, etc.

A common 3 tier hierarchy system for a Mission-level

requirements document might look something like this:

This method of organization helps you focus on

each specific domain that needs to be addressed,

and thus author requirements documents that are as

comprehensive as possible. It also helps you easily

find the areas you need to modify in the baseline

specification when adding functionality to an exist-

ing system. Last, but not least, it allows requirements

users to quickly drill down to the exact functional

area they are looking for.

Many organizations will begin their requirements

documents at the subsystem or component level

depending on the nature of their business. A hierarchical

structure should still be used.

In component specifications, for example, a func-

tional hierarchy is often used, with very broad

functional missions at the top breaking down into

sub-functions, and those sub-functions breaking

down into successive tiers of sub-functions.

1. USE A (GOOD) REQUIREMENTS DOCUMENT TEMPLATE

2. ORGANIZE IN A HIERARCHICAL STRUCTURE

5qracorp.com

Level Example

Mission On-orbit, Highway, Moor

System Spacecraft ops, Truck ops, Vessel ops

Phase De-orbitting, Cruise Control, Docking

4qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Like most spoken languages, English is full of words

that have multiple definitions and which evoke sub-

tle shades of meaning. This is a great thing when it

comes to self-expression, but can lead to confusion

and disagreement when it comes to specifying and

interpreting requirements.

A good tactic for reducing ill-definition and

misinterpretation of requirements is to standardize

the language you are going to use to express them.

A good way to do this is with a dedicated section

toward the beginning of your requirements docu-

ment (part of your template). This section will define

exactly how certain terms will be used within the

document itself, and how they should be interpreted

when found in non-requirements documents refer-

enced by the document.

The following segment is a good example of

language standardization from NASA’s ISS Crew

Transportation and Services Requirement Document:

When used within the context of a requirement

under a contract, statements in this document con-

taining shall are used for binding requirements that

must be verified and have an accompanying method

of verification; will is used as a statement of fact,

declaration of purpose, or expected occurrence; and

should denotes an attribute or best practice which

must be addressed by the system design. When

used within the context of a reference document

under an agreement, the verbs shall, will, and should

are only intended as informational and are not bind-

ing.In some cases, the values of quantities included

in this document have not been confirmed and are

designated as: “To Be Confirmed” (TBC) – still under

evaluation, and “To Be Determined” (TBD) or “To

Be Supplied” (TBS) – known, but not yet available.

A “To Be Resolved” (TBR) is used when there is a

disagreement on the requirement between technical

teams. When a change in a noted characteristic is

deemed appropriate, notification of the change shall

be sent to the appropriate review and change control

authority.

Each requirement in CCT-REQ-1130 is annotated by

its section number. At the end of each requirement

text is a requirement ID of the format R.CTS. This

corresponds to the absolute ID in NASA’s require-

ments database. It can be used to cross reference

requirements in this document to spreadsheet

exports of the database. See Section 1.3 in the event

of conflict between this document and spreadsheet

exports.

Strictly defining your terms and adhering strictly

to your definitions will not only reduce conflict and

confusion in interpreting your requirements – with

practice, using standardized language will also save

you time in writing requirements.

4. STANDARDIZE YOUR REQUIREMENTS DOCUMENT LANGUAGE

7qracorp.com

It may come as a surprise, but many requirements

documents lack a comprehensive requirement

identification system.

Requirement identifiers are often a requirement

themselves. Systems purchased under contract

between a customer and a supplier – as in the case

of most government-purchased systems, for exam-

ple – are normally developed in accordance with

an industry accepted standard, like IEEE/EIA 12207,

as a stipulation of the contract. Such standards

typically require that each requirement in every

requirement document be tagged with a project

unique identifier (PUI).

And for good reason.

Tagging each requirement with a PUI improves and

simplifies traceability between high-level and low-

level requirements, and between requirements and

verification tests. Brief identifiers make it easy to

build traceability tables that clearly link each require-

ment to its ancestors in higher level documents, and

to the specific tests intended to verify it. Traceability

tables simplify the process of demonstrating to the

customer and internal stakeholders that the system

has been developed to, and proven to comply with,

the agreed top-level requirements.

What’s more, linking these unique identifiers to

the hierarchical structure of your requirements

document – in other words, basing your PUIs on the

paragraph numbers of the document – makes it easy

for users to find referenced requirements within the

document itself.

Requirements documents that do not employ such

an identifier system are not only difficult to read and

reference, they make traceability a nightmare.

Therefore, each requirement should be marked with

a PUI that allows users to easily reference both the

requirement and its position in the overall document.

Let’s look at an example. NASA’s ISS Crew

Transportation and Services Requirements Document

contains the following requirement 3.5.2.5:

3.5.2.5 Spacecraft Ventilation for Emergency Landings

The spacecraft shall provide cabin ventilation equiv-

alent to 4 cabin air exchanges per crewmember per

hour while crew is present after an emergency land-

ing. [R.CTS.364] Rationale: A remote landing could

subject the spacecraft and crew to harsh environ-

mental conditions ranging from high atmospheric

temperatures to rough seas. If the crew must remain

in the vehicle, this ventilation will equalize cabin tem-

perature, mitigate CO2 buildup, and replenish O2. The

duration of this service and the variability of ventila-

tion rates with landing environments are developed

in conjunction with the crew survivability strategy in

requirement 3.5.2.4.

The PUI for this requirement – 3.5.2.5 – indicates the

exact position in the document in which this require-

ment is stated, according to the following section/

subsection/paragraph hierarchy:

3: ISS Crew Transportation and Service Requirements

5: Entry/Landing Requirements

2: Contingency

5: Spacecraft ventilation for emergency landings

Also note that this identification system allows NASA

to also link requirements to related requirements

– in this case requirement 3.5.2.4: Crew Survival

after Emergency Landing – by referencing them in

rationale statements (see Tip #8, on the next page).

3. USE IDENTIFIERS TO YOUR ADVANTAGE

6qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

What does “implementation-neutral” mean? It

means that functional requirements should not

restrict design engineers to a particular implementa-

tion. In other words, functional requirements should

be free of design details.

Writing functional requirements in an implementation

neutral manner has a number of benefits:

• Allows design engineers to design the system in

the most efficient manner available.

• Allows implementation to be modified without

affecting (rewriting) the requirement, as long as

the requirement can still be fulfilled by the new

implementation.

• Greatly reduces the possibility of conflict

between (and rewriting of) requirements due to

incompatibility of implementation details.

• A good way to avoid dictating implementation

is to write your functional requirements strictly

in terms of the external interface or externally

observable behaviour of the system being speci-

fied. That means functional requirements should

specify the required external output behaviour

of the system for a stated set or sequence of

inputs applied to its external interfaces.

In other words, state what the system must do,

not how it must do it.

Constraints on manner of implementation should not

appear in functional requirements. They should

be spelled out in very specific non-functional

requirements at the outset of the program.

7. WRITE FUNCTIONAL REQUIREMENTS TO BE IMPLEMENTATION-NEUTRAL

9qracorp.com

One of requirements engineering’s greatest debates

is on the use of imperatives, words like shall, must,

will, should, etc…

Although there were some dissenters amongst the

requirements engineers we interviewed, the con-

sensus was to crown “shall” as a binding provision.

Non-binding provisions are indicated by the word

“should” or “may.” And a declaration of purpose

is indicated by the word “will.”

Also, many requirements engineers like to use the

word “must” to express constraints and certain

quality and performance requirements (non-func-

tional requirements). The use of “must” allows them

to express constraints without resorting to passive

voice (see Tip #14), and to easily distinguish between

functional requirements (expressed with “shall”)

and non-functional requirements (expressed with

“must”).

Once you have agreement on how each imperative

term will be used within your organization, docu-

ment that agreed usage within your requirements

document template.

In general the rules for using imperatives are simple.

Use exactly one provision or declaration of purpose

(such as shall) for each requirement, and use it

consistently across all requirements.

“Each requirement shall be assigned a project-unique

identifier to support testing and traceability and shall

be stated in such a way that an objective test can be

defined for it.”

Software Requirements Specification (SRS) Data

Item Description (DID), MIL-STD-498.

Since appearing in the referenced standard over

20 years ago, that requirement has appeared in a

number of subsequent standards and in scores of

requirements documents and templates. Yet, it’s

surprising how many requirements – written under

those same standards – fail to meet the second half of

that requirement.

Every time you write a new requirement, you must

ask yourself,

“How will successful implementation of this

requirement be verified?”

Writing your requirement with a specific test scenario

in mind will help ensure that both design and test

engineers understand exactly what they have to do.

Of course, the nature of the test scenario – the man-

ner in which the requirement will be verified – will

influence how narrowly the requirement has to be

defined. Higher level requirements are often tested by

inspection or through user testing (flight testing, test

driving, etc.) and thus may be quite broad in scope.

Lower level requirements that will be verified through

software testing or system integration testing must

normally be specified to a finer degree of detail.

A good practice for insuring requirement testability,

for example, is to specify a reaction time window

for any output event the software must produce in

response to a given input condition, as in the follow-

ing example:

3.8.5.3.1: The Engine Monitor shall set <Overtemp

Alert> to TRUE within 0.5 seconds when <Engine

Temp> equals or exceeds 215° F.

5. BE CONSISTENT WITH IMPERATIVES

6. MAKE SURE EACH REQUIREMENT IS TESTABLE

8qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

One of the most underused tactics in requirements

writing is the use of directives.

Directives are words or phrases that point to addi-

tional information which is external to the require-

ment, but which clarifies the requirement. Directives

typically employ phrases like “as shown in” and “in

accordance with,” and they often point to tables,

illustrations or diagrams. They may also reference

other requirements or information located else-

where in the document.

The following requirement from NASA’s ISS Crew

Transportation and Services Requirement Document

is a great example of use of a directive:

3.2.5.4 Emergency Lighting

The CTS shall provide automatically activated

emergency lighting for crew egress and opera-

tional recovery in accordance with Table 3.2.5.4-1.

[R.CTS.044]

Rationale: Emergency lighting is a part of the overall

lighting system for all vehicles. It allows for crew

egress and operational recovery in the event of

a general power failure. Efficient transit includes

appropriate orientation with respect to doorways

and hatches, as well as obstacle avoidance along

the egress path. The emergency lighting system may

include unpowered illumination sources that provide

markers or orientation cues for crew egress. Design

guidance for emergency lighting can be found in

NASA/SP-2010-3407, Human Integration Design

Handbook (HIDH).

Table 3.2.5.4-1: Emergency Lighting Intensity Levels

Notes:

1. Levels are measured at the task object or 789 mm (30 in.)
above floor, as applicable.

2. All levels are minimum.

In this example, the directive is the phrase “in

accordance with Table 3.2.5.4-1.” Note that while the

table is separate from the requirement statement, it

provides information which clarifies the requirement

and thus is an integral part of the requirement.

It is vitally important to separate the supporting

information referenced by the directive from the

requirement statement. Trying to weave complex

supporting data into a requirement statement can

make the statement overly complex and unclear to

the reader. Document users should never have to dig

in a haystack to find a clear and specific requirement.

9. REMEMBER THAT DIRECTIVES ARE THERE TO HELP YOU

11qracorp.com

Area(1) or Task(1) Lux(2) Ft. C(2)

Passageway 10 1

Emergency Task 32 3

Rationale statements are another great tool for reducing

ambiguity in your requirements document. They

allow you to simplify your requirements statement

while providing users with additional information.

A short and concise sentence is usually all that is

needed to convey a single requirement – but it’s often

not enough to justify a requirement. Separating your

requirements from their explanations and justifica-

tions enables faster comprehension, and makes your

reasoning more evident.

The following requirement from NASA’s ISS Crew

Transportation and Services Requirement Document

is a great example of a rationale statement’s utility.

3.8.5.1.5 Operable by Single Crewmember

The spacecraft shall be operable by a single crew-

member for operations that require crew control.

[R.CTS.135]

Rationale: The vehicle must be designed so that

mission events can be completed by a single crew-

member. In addition, vehicle design for single

crewmember operations drives operations simplic-

ity and contributes to operations affordability. This

requirement results from lessons learned from the

Shuttle cockpit, which had critical switches that are

out of the operator’s reach zone and software that

requires more than one crewmember to perform a

nominal operation. This requirement does not pre-

clude provision of multiple crew stations for backup

and crew resource management (CRM) operations.

The requirement itself is very short and straight-

forward. The rationale statement supplements it by

stating some of the factors (simplicity and afford-

ability) that drove the inclusion of the requirement,

and the history behind those driving factors (lessons

learned from operation of the earlier Shuttle cockpit).

It also states a caveat (does not preclude multiple

crew stations) to preempt misinterpretation of the

requirement’s boundaries.

When a requirement’s rationale is visibly and clearly

stated, its defects and shortcomings can be more

easily spotted, and the rationale behind the require-

ment will not be forgotten. Rationale statements also

reduce the risk of rework, as the reasoning behind the

decision is fully documented and thus less likely to be

re-rationalized… as so often happens!

When creating a rationale statement, begin by asking

yourself the following questions:

• What is an aspect of this requirement that could

be a source of contention?

• How am I choosing to address that aspect in the

requirement?

• What is the evidence to support my decision?

• What other requirements might have some effect

on the interpretation and implementation of

the requirement and thus should be referenced

in the rationale?

8. RATIONALE STATEMENTS ARE ALWAYS APPRECIATED

10qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://twitter.com/qracorp

We admit it. This is actually a continuation of the

previous tip. But we want to give credit where credit

is due.

EARS: The Easy Approach to Requirements Syntax

developed by Mavin et al. provides a number

of proven patterns for writing specific types of

requirements. (See Table 1)

Here are some examples of the various requirement

types listed, written using the corresponding syntax

pattern.

Ubiquitous
The FCC shall control communication on the
Avionics Bus in accordance with MIL-STD-1553B
and Table 3.1 of the program ICD.

Event-Driven
When the power button is depressed while the
system is off, the system shall initiate its start-up
sequence.

Unwanted Behaviour
If the battery charge level falls below 20%
remaining, then the system shall go into Power
Saver mode.

State-Driven
While in the Power Saver mode, the system shall
limit screen brightness to a maximum of 60%.

Optional Feature
Where the car is furnished with the GPS naviga-
tion system, the car shall enable the driver to mute
the navigation instructions via the steering wheel
controls.

A word about ubiquitous requirements

Many requirements that may seem ubiquitous

are really driven by some trigger or condition.

For example, the requirement:

The system shall monitor the engine temperature

sensor and illuminate the engine overtemp symbol

within 0.2 seconds of an overtemp indication.

is written in the ubiquitous format, but is, in fact,

driven by an unwanted behaviour. Rewriting the

requirement in the unwanted behaviour format

makes the trigger-response nature of the require-

ment more clear:

If the engine temperature sensor indicates an over-

temp condition, then the system shall illuminate the

engine overtemp symbol within 0.2 seconds.

Be sure to check all “ubiquitous” requirements –

especially if they’re functional requirements – for

hidden triggers. Most true ubiquitous requirements

are non-functional.

11. USE YOUR EARS TO WRITE CONCISE REQUIREMENTS

13qracorp.com

Requirement Type Syntax Pattern

 The <system name>

shall <system response>

WHEN <trigger> <optional pre-

condition> the <system name>

shall <system response>

IF <unwanted condition or

event>, THEN the <system

name> shall <system response>

WHILE <system state>, the

<system name> shall <system

response>

WHERE <feature is included>,

the <system name> shall <sys-

tem response>

(combinations of the above patterns)

Ubiquitous

Event-Driven

Unwanted

State-Driven

Optional Feature

Complex

Notes:

In this table from slide 26, the word “system” refers to the
system being specified, which may be a subsystem or component
of a larger system.

Table 1

A key attribute of clear, effective requirements is that

they are concise. A good technique for authoring

concise requirements is to use accepted requirement

sentence formats wherever possible.

Engineers who want to write crystal clear requirements

would be wise to learn a few basic requirement sen-

tence structures they can apply consistently. A very

basic format to start off with is:

Unique ID: Object + Provision/Imperative (shall) +

Action + Condition + [optional] Declaration Of Purpose

/Expected Occurrence (will)

An example of this format in action is the following:

3.1.5.3 ISS Fly-around

The spacecraft shall perform one complete fly-around

at a range of less than 250 meters, as measured from

spacecraft center of mass to ISS center of mass, after

undocking from the ISS.

Unique ID: 3.1.5.3

Object: The spacecraft

Provision: shall

Action: perform one complete fly-around at a range

 of less than 250 meters, as measured from

 spacecraft center of mass to ISS center

 of mass

Condition: after undocking from the ISS

Keep requirements tight. Keep them consistent. And

remember: you have rationale (Tip #8) and directives

(Tip #9) at your disposal to keep them uncluttered.

10. FOLLOW REQUIREMENT FORMATTING BEST PRACTICES

12qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Weak words – also called subjective, vague or

ambiguous words – are adjectives, adverbs and

verbs that don’t have a concrete or quantita-

tive meaning. Such words are thus subject to

interpretation by the reader of your requirements

document.

Examine the following requirement:

Operation and location of all hands-on throttle

controls shall be intuitive for both crew members.

What does “intuitive” mean in this case? It could

mean something entirely different to the client or

manager than it does to the design engineers. And

what may be deemed “intuitive” by one user, could

“require some getting used to” for another.

Good requirements are free of weak, subjective

words such as:

Define your requirements in precise, measureable

terms. Don’t specify that a system or feature will

be intuitive, reliable or compatible; define what will

make it intuitive, reliable or compatible.

13. DON’T USE WEAK WORDS

15qracorp.com

During a test flight over the Mojave Desert on Oct. 31,

2014, an unanticipated cockpit switch action by the

co-pilot prompted the air brakes of Virgin Galactic’s

VSS Enterprise experimental spacecraft to deploy at

1.4 times the speed of sound. This unfortunate and

preventable event resulted in the catastrophic, in-flight

breakup of the vehicle, the death of the co-pilot and

severe injury to the pilot.

Mistakes and oversights happen, but they can be

greatly reduced by going beyond expected behaviour

and anticipating exception scenarios. Exception scenar-

ios are conditions in which a given requirement should

not apply or should be altered in some way.

In Virgin Galactic’s case, having an exception scenario

for at least each phase of flight with corresponding trig-

gers could have eliminated the system flaw that caused

the airbrake to deploy at the wrong moment.

An example of a trigger condition and a corresponding

trigger could be:

Trigger Condition: Spacecraft true airspeed between

x and y.

Trigger: Air brakes shall not deploy.

If this were the only exception scenario identified, the

requirement for deployment of the airbrake might have

been corrected with the simple inclusion of the phrase:

“…except when the spacecraft true airspeed is between

x and y.”

On the other hand, if multiple exception scenarios were

identified, it might be better to create a bulleted list of

exceptions, in order to make the requirement easier

to read.

12. GO BEYOND EXPECTED EVENTS AND BEHAVIOUR

14qracorp.com

• efficient

• powerful

• fast

• easy

• effective

• reliable

• compatible

• normal

• user-friendly

• few

• most

• quickly

• timely

• strengthen

• enhance

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

While it is sometimes appropriate to state what a

system shall not do, bear in mind that a system shall

not do far more than what it shall do.

Stating requirements using “shall not” often causes

reviewers to call into question other things the sys-

tem shall not do, since “shall not” turns inaction or a

lack of response into a requirement. Such confusion

can generally be avoided by heeding the following

rules of thumb.

• Use negative specification primarily for emphasis,

in prohibition of potentially hazardous actions.

Then state the safety case in the rationale for the

requirement.

• Don’t use negative specification for requirements

that can be restated in the positive. Substitute

shall enable for shall not prohibit, shall prohibit in

place of shall not allow, and so on.

• Avoid double negatives completely. Use shall

allow instead of shall not prevent, for example.

Requirements documents often don’t give compatibility

issues the emphasis they deserve. It is common to

find requirements such as:

The in-vehicle infotainment system shall be

compatible with the following devices…

But what, exactly, does “compatible” mean in this

case? Does it mean the infotainment system shall

be able to play music stored on connected devices?

Shall it allow the driver to make hands-free phone

calls from such devices? Is the vehicle required to

have both wireless and wired connections?

If the system being designed must be compatible

with other systems or components, explicitly state

the specific compatibility requirements.

In other words, don’t leave it up to the hardware and

software engineers to determine what will make the

system they’re designing “compatible” with a given

device (and expect the test engineers to make the

same determination). It’s up to you, the requirements

engineer, to define what it means to be compatible

with the device in question.

15. USE NEGATIVE REQUIREMENTS SPARINGLY

16. DEFINE COMPATIBILITY

17qracorp.com

Many adjectives that are also past participles of verbs

– words like enhanced, strengthened and ruggedized

– are notorious weak words, because they sound like

engineering terms, but are weak in specificity. Here’s an

example:

The spacecraft shall be enhanced to protect the crew

from an impact force of 400kg.

What does enhanced mean in this case? Shall the

spacecraft’s fuselage be reinforced? Shall it have abort

functionality? Shall it perform some manoeuvre to pro-

tect the crew? The word “enhanced” is ambiguous.

The problem here, however, is not so much the use

of a weak word as it is the use of passive voice (indi-

cated by a form of the verb “to be”). The phrase “shall

be enhanced” seems to imply that this is a functional

requirement, something that needs to be done. But in

fact, it is not something that needs to be done by the

system, but to the system. Thus it is not a functional

requirement of the system, but a quality requirement

– a constraint placed upon the implementation

of the system.

This requirement could have been made more easily

recognizable as a constraint if it had been re-phrased

using the word “must” as follows:

The spacecraft must protect the crew from an impact

force of 400kg.

– OR –

The spacecraft cabin must withstand an impact force of

400kg in order to protect the crew from injury.

Of course, the addition of a rationale statement (see

Tip #8) would help to clarify this requirement further,

but as you can see, just changing from shall+passive

to must+active makes it clear that this requirement is

a constraint and also makes it more implementation-

neutral (see Tip #7).

14. AVOID PASSIVE VOICE

16qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Requirements are intended to be the control

system that keeps your development aligned with

your customer’s or manager’s expectations.

This might sound obvious, but many engineers are

so focused on authoring requirements with a certain

concept in mind, they forget to adequately consider

the product from the perspective of the customer

or manager who needs to make sure the system can

be easily and cost-effectively used and maintained.

Such a perspective can’t be narrow. It comes from

a thorough analysis of the needs of all potential

stakeholders who will interact with the system.

The list of these stakeholders may well go beyond

what had been initially considered and should take

into consideration all relevant domain experts,

and even users!

For an avionics component, for example, you and

the rest of your requirements development team

would want to ask yourselves questions like:

• Which other components will this component

interface with?

• Will this component interface with third-party

suppliers’ systems?

• Which maintenance crews will come into contact

with this?

• Do the pilots need to interact with it?

Identify your stakeholders early, consider their use

levels, and write from their perspective.

Besides writing requirements from the perspective of

a client or manager, another requirements quality best

practice is to evaluate requirements with a diverse team.

This team should consist of any designers and devel-

opers who will be using the requirements to create the

system, the testers who will verify compliance with the

requirements, engineers who design, maintain or man-

age other systems that will support or interact with the

new system, end-user representatives and, of course,

the client team.

Many companies require just such an evaluation – and

a formal sign-off of the requirements document – by

all affected internal organizations, before development

can begin. Any subsequent additions or changes to the

document undergo a similar evaluation as part

of a formal change management system. Such a system

greatly increases the probability that the requirements

will meet the needs of all stakeholders.

Tip 20a: Make note of which users were heavily consid-

ered for each requirement, so you can have that user

provide focused feedback only on the requirements

that are relevant to them.

19. WRITE REQUIREMENTS DOCUMENTS FROM THE PERSPECTIVE
 OF A CLIENT OR MANAGER

20. EVALUATE THE REQUIREMENTS DOCUMENT WITH A DIVERSE TEAM

19qracorp.com

What does a “/” really mean? Does it mean and, or, one

of, or a combination thereof (and/or)? These symbols

can make all the difference between a clearly defined

requirement and one that is impossible to interpret. In

general, it is best to avoid using slash (/) symbols in

stating requirements.

An example of ambiguity arising from the use of “/” is:

The vehicle shall enable the driver to manually disen-

gage the automatic cruise/steering system with one

hand via controls on the steering wheel.

In this example, it is unclear if the design engineers

should provide for the cruise control and the automatic

steering assist to be disengaged at the same time with

a single one-handed action, or separately, via two one-

handed actions. Probably, it’s the latter, in which case

you really have two requirements which should be state

separately:

X.X.X.1: The vehicle shall enable the driver to manually

disengage the automatic cruise control function with

one hand via controls on the steering wheel.

X.X.X.2: The vehicle shall enable the driver to manually

disengage the automatic steering assist function with

one hand via controls on the steering wheel.

Slash symbols should act as red flags, signalling the

need to watch out for ambiguities. If, as in the preceding

example, a subsystem is named with a slash because it’s

multifunctional, ask yourself if referring to its discrete

functions or components – rather than the subsystem

by name – might make your requirement more clear.

Requirements specify the expected behaviour and

essential properties of a system. So, given that the verb

specify, the noun specification and the adjective spe-

cific all share the same root, it stands to reason that

requirements should be specific, rather than vague.

Does it not?

Yet, vagueness is epidemic in requirements

specifications.

One of the big reasons for this is that both authors

and customers often allow vagueness to slip into their

requirements. Customers may like a vague requirement,

reasoning that if its scope is unbounded, they can refine

it later when they have a better idea of what they want.

Authors and engineers may not mind, since a slack

requirement may appear to give them more “freedom”

in their implementation.

All eventually suffer, however, when the implementation

misses the mark and extensive rework is required.

Here are four simple pointers for avoiding vagueness:

• Use active voice (shall + present tense verb) and

avoid passive voice (shall be + past participle) wher-

ever possible (see Tip # 14).

• Do not use unspecific adjectives (weak words) such

as easy, straightforward, or intuitive (see Tip #13).

• Define precisely what the system needs to do (in

functional requirements) or to be (in non-functional

requirements) in such terms that compliance can be

readily observed, tested or otherwise verified (see

Tip #6).

• Don’t be swayed by those who want to keep

requirements vague. Keep in mind the costs of

scrap and re-work while defining requirements.

17. AVOID USING SLASH (/) SYMBOLS

18. DON’T FALL INTO THE REQUIREMENTS DOCUMENT VAGUENESS TRAP

18qracorp.com

https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com

Most professionals wouldn’t dream of handing in a

report without proofing it for spelling and grammar

errors. Yet, many requirements documents make it

to the verification stage without undergoing any

prior quality checks for completeness, consistency,

and clarity.

Having a quality assurance checklist while analyzing

requirements document significantly streamlines

the process of conforming to best practices. That’s

why we’ve included just such a checklist in this

guide – based on the previous 20 tips!

What’s even better than a checklist? The automated

quality analysis of QVscribe! Similar to spellcheck -

it’s conveniently fast & easy to use.

Most errors in systems and project development

stem from poorly written, ambiguous, and inconsis-

tent requirements. QVscribe helps managers, ana-

lysts, and engineers increase the clarity, consistency,

and quality of their requirements documentation –

all within the requirements authoring & management

tools they already use.

Learn more at qracorp.com/qvscribe

21. DON’T HAND OFF THE REQUIREMENTS DOCUMENT FOR VERIFICATION
 BEFORE COMPLETING A QUALITY CHECK

20qracorp.com 21qracorp.com

ABOUT QVscribe

Author Requirements

that are a Dream to Work With

Seamless Integration with the

Tools you Already Use

Cut Through the Noise

Get Back to Engineering

Automate Your Requirements
Quality Check

Try QVscribe at qracorp.com/qvscribe

http://qracorp.com/qvscribe
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
https://www.linkedin.com/company/quantum-research-analytics?trk=mini-profile
https://twitter.com/qracorp
https://qracorp.com/
http://qracorp.com
http://qracorp.com/qvscribe

10. Is the requirement stated clearly and
concisely?

• Is it formatted according to our agreed
best practices?

11. Are the requirement’s preconditions
and triggers clearly defined within the
requirement?

12. Have exception scenarios been
explored for this requirement?

• Have the corresponding exception
conditions been properly and clearly
stated within the requirement or
referenced via directive?

13. Is the requirement stated in precise,
measurable terms?

• Is it free of weak words
(like the following)

• efficient
• powerful
• fast
• easy
• effective
• reliable
• compatible
• normal
• userfriendly
• before
• after
• quickly
• timely
• strengthen
• enhance

14. Has the requirement been stated
in active voice?

• Has passive voice (shall be) been
avoided?

• If the requirement is non-functional,
has it been stated using the
imperative must?

15. Does the requirement state what the
system shall do, rather than what it shall
not do?

• If “shall not” has been used, is the use
of the negative justified (for safety, etc.),
and have double negatives been
avoided?

16. Where “compatibility” is required, has
the nature of that compatibility been fully
defined?

17. Does the requirement contain any
slashes (/) or other symbols that might
cause misinterpretation?

• Could the requirement be split or other-
wise restated to remove any ambiguity?

18. Is the requirement specific, rather than
vague?

• Does it give the implementation team
a clear, precise target to shoot for?

19. Has each requirement been evaluated
and vetted by all stakeholders who are
impacted by it?

• Which design and implementation
groups are affected?

• Which test and integration groups
are affected?

• Are any third-party equipment
organizations affected?

• Which maintenance and support
organizations are affected?

• Do safety specialists, human factors
specialists or users need to evaluate it?

20. Are all the impacted stakeholders on
the circulation list for final review of the
requirements document?

• Have we provided each of them a list of
the requirements they need to review?

Final Quality Checks

1. Is the template for the document up to
date?

• Do the boilerplate sections reflect our
current procedures and best practices?

• Is there a section that defines how
imperatives and other standardized
language shall be used and interpreted?

• Are there any sections that need to be
revised?

2. Does the document follow our agreed
hierarchical structure?

3. Are requirements identifiers linked to
the document structure?

• Does the structure help users find
requirements easily?

4. Is the requirement tagged with a
Project Unique Identifier?

5. Has the proper imperative been used
for the requirement?

• Has the imperative (shall or must) been
used once and only once?

• Has the imperative been used according
to our standardization rules?

• Are all other standardized words used
according to our standardization rules?

6. Can an objective test be written for
the requirement?

• Are both a test method and a test
case evident in the wording of the
requirement?

• Are all necessary reaction windows
or other tolerances stated in the
requirement?

7. If the requirement is functional, is it
implementation-neutral?

• Does the requirement clearly state what
the system must do and not how the
system must do it?

• Is the requirement stated strictly in
terms of its external interfaces, or
behaviours that can be readily
observed?

8. Has the rationale for the requirement
been clearly stated?

• Are there any associated requirements
that might affect interpretation of this
requirement and should therefore be
referenced in the rationale statement?

• If no rationale statement has been
included, is the rationale obvious in
the requirement statement or from
associated directives or references?

9. Does the requirement include
a directive?

• If so, does the reference clarify the
requirement, and is it easy to locate?

• If not, could the requirement be
simplified or clarified through use
of a directive?

REQUIREMENTS DOCUMENT QUALITY CHECKLIST

Checks of the Document Structure

Checks of Each Written Requirement

To learn more about QVscribe, visit qracorp.com/qvscribe

qracorp.com

version 1

https://qracorp.com
https://twitter.com/QRACorp?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.linkedin.com/company/quantum-research-analytics
https://www.youtube.com/channel/UCzCrMEqZhkfniev3aMIm7aw
http://qracorp.com

